Found problems: 25757
2021 Olimphíada, 4
Let $H$ be the orthocenter of the triangle $ABC$ and let $D$, $E$, $F$ be the feet of heights by $A$, $B$, $C$. Let $\omega_D$, $\omega_E$, $\omega_F$ be the incircles of $FEH$, $DHF$, $HED$ and let $I_D$, $I_E$, $I_F$ be their centers. Show that $I_DD$, $I_EE$ and $I_FF$ compete.
1974 IMO Longlists, 48
We are given $n$ mass points of equal mass in space. We define a sequence of points $O_1,O_2,O_3,\ldots $ as follows: $O_1$ is an arbitrary point (within the unit distance of at least one of the $n$ points); $O_2$ is the centre of gravity of all the $n$ given points that are inside the unit sphere centred at $O_1$;$O_3$ is the centre of gravity of all of the $n$ given points that are inside the unit sphere centred at $O_2$; etc. Prove that starting from some $m$, all points $O_m,O_{m+1},O_{m+2},\ldots$ coincide.
2011 Canada National Olympiad, 2
Let $ABCD$ be a cyclic quadrilateral with opposite sides not parallel. Let $X$ and $Y$ be the intersections of $AB,CD$ and $AD,BC$ respectively. Let the angle bisector of $\angle AXD$ intersect $AD,BC$ at $E,F$ respectively, and let the angle bisectors of $\angle AYB$ intersect $AB,CD$ at $G,H$ respectively. Prove that $EFGH$ is a parallelogram.
1999 Brazil Team Selection Test, Problem 4
Assume that it is possible to color more than half of the surfaces of a given polyhedron so that no two colored surfaces have a common edge.
(a) Describe one polyhedron with the above property.
(b) Prove that one cannot inscribe a sphere touching all the surfaces of a polyhedron with the above property.
2015 Belarus Team Selection Test, 2
Let $ABC$ be a triangle. The points $K, L,$ and $M$ lie on the segments $BC, CA,$ and $AB,$ respectively, such that the lines $AK, BL,$ and $CM$ intersect in a common point. Prove that it is possible to choose two of the triangles $ALM, BMK,$ and $CKL$ whose inradii sum up to at least the inradius of the triangle $ABC$.
[i]Proposed by Estonia[/i]
2021 HMNT, 8
Eight points are chosen on the circumference of a circle, labelled $P_1$, $P_2$, ..., $P_8$ in clockwise order. A route is a sequence of at least two points $P_{a_1}$, $P_{a_2}$, $...$, $P_{a_n}$ such that if an ant were to visit these points in their given order, starting at $P_{a_1}$ and ending at $P_{a_n}$, by following $n-1$ straight line segments (each connecting each $P_{a_i}$ and $P_{a_{i+1}}$), it would never visit a point twice or cross its own path. Find the number of routes.
2006 Czech-Polish-Slovak Match, 6
Find out if there is a convex pentagon $A_1A_2A_3A_4A_5$ such that, for each $i = 1, \dots , 5$, the lines $A_iA_{i+3}$ and $A_{i+1}A_{i+2}$ intersect at a point $B_i$ and the points $B_1,B_2,B_3,B_4,B_5$ are collinear. (Here $A_{i+5} = A_i$.)
2008 AMC 10, 25
A round table has radius $ 4$. Six rectangular place mats are placed on the table. Each place mat has width $ 1$ and length $ x$ as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length $ x$. Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is $ x$?
[asy]unitsize(4mm);
defaultpen(linewidth(.8)+fontsize(8));
draw(Circle((0,0),4));
path mat=(-2.687,-1.5513)--(-2.687,1.5513)--(-3.687,1.5513)--(-3.687,-1.5513)--cycle;
draw(mat);
draw(rotate(60)*mat);
draw(rotate(120)*mat);
draw(rotate(180)*mat);
draw(rotate(240)*mat);
draw(rotate(300)*mat);
label("$x$",(-2.687,0),E);
label("$1$",(-3.187,1.5513),S);[/asy]$ \textbf{(A)}\ 2\sqrt {5} \minus{} \sqrt {3} \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ \frac {3\sqrt {7} \minus{} \sqrt {3}}{2} \qquad \textbf{(D)}\ 2\sqrt {3} \qquad \textbf{(E)}\ \frac {5 \plus{} 2\sqrt {3}}{2}$
2019 Kazakhstan National Olympiad, 6
The tangent line $l$ to the circumcircle of an acute triangle $ABC$ intersects the lines $AB, BC$, and $CA$ at points $C', A'$ and $B'$, respectively. Let $H$ be the orthocenter of a triangle $ABC$. On the straight lines A'H, B′H and C'H, respectively, points $A_1, B_1$ and $C_1$ (other than $H$) are marked such that $AH = AA_1, BH = BB_1$ and $CH = CC_1$. Prove that the circumcircles of triangles $ABC$ and $A_1B_1C_1$ are tangent.
2022 Germany Team Selection Test, 1
Given a triangle $ABC$ and three circles $x$, $y$ and $z$ such that $A \in y \cap z$, $B \in z \cap x$ and $C \in x \cap y$.
The circle $x$ intersects the line $AC$ at the points $X_b$ and $C$, and intersects the line $AB$ at the points $X_c$ and $B$.
The circle $y$ intersects the line $BA$ at the points $Y_c$ and $A$, and intersects the line $BC$ at the points $Y_a$ and $C$.
The circle $z$ intersects the line $CB$ at the points $Z_a$ and $B$, and intersects the line $CA$ at the points $Z_b$ and $A$.
(Yes, these definitions have the symmetries you would expect.)
Prove that the perpendicular bisectors of the segments $Y_a Z_a$, $Z_b X_b$ and $X_c Y_c$ concur.
EMCC Guts Rounds, 2011
[u]Round 1[/u]
[b]p1.[/b] In order to make good salad dressing, Bob needs a $0.9\%$ salt solution. If soy sauce is $15\%$ salt, how much water, in mL, does Bob need to add to $3$ mL of pure soy sauce in order to have a good salad dressing?
[b]p2.[/b] Alex the Geologist is buying a canteen before he ventures into the desert. The original cost of a canteen is $\$20$, but Alex has two coupons. One coupon is $\$3$ off and the other is $10\%$ off the entire remaining cost. Alex can use the coupons in any order. What is the least amount of money he could pay for the canteen?
[b]p3.[/b] Steve and Yooni have six distinct teddy bears to split between them, including exactly $1$ blue teddy bear and $1$ green teddy bear. How many ways are there for the two to divide the teddy bears, if Steve gets the blue teddy bear and Yooni gets the green teddy bear? (The two do not necessarily have to get the same number of teddy bears, but each teddy bear must go to a person.)
[u]Round 2[/u]
[b]p4.[/b] In the currency of Mathamania, $5$ wampas are equal to $3$ kabobs and $10$ kabobs are equal to $2$ jambas. How many jambas are equal to twenty-five wampas?
[b]p5.[/b] A sphere has a volume of $81\pi$. A new sphere with the same center is constructed with a radius that is $\frac13$ the radius of the original sphere. Find the volume, in terms of $\pi$, of the region between the two spheres.
[b]p6.[/b] A frog is located at the origin. It makes four hops, each of which moves it either $1$ unit to the right or $1$ unit to the left. If it also ends at the origin, how many $4$-hop paths can it take?
[u]Round 3[/u]
[b]p7.[/b] Nick multiplies two consecutive positive integers to get $4^5 - 2^5$ . What is the smaller of the two numbers?
[b]p8.[/b] In rectangle $ABCD$, $E$ is a point on segment $CD$ such that $\angle EBC = 30^o$ and $\angle AEB = 80^o$. Find $\angle EAB$, in degrees.
[b]p9.[/b] Mary’s secret garden contains clones of Homer Simpson and WALL-E. A WALL-E clone has $4$ legs. Meanwhile, Homer Simpson clones are human and therefore have $2$ legs each. A Homer Simpson clone always has $5$ donuts, while a WALL-E clone has $2$. In Mary’s secret garden, there are $184$ donuts and $128$ legs. How many WALL-E clones are there?
[u]Round 4[/u]
[b]p10.[/b] Including Richie, there are $6$ students in a math club. Each day, Richie hangs out with a different group of club mates, each of whom gives him a dollar when he hangs out with them. How many dollars will Richie have by the time he has hung out with every possible group of club mates?
[b]p11.[/b] There are seven boxes in a line: three empty, three holding $\$10$ each, and one holding the jackpot of $\$1, 000, 000$. From the left to the right, the boxes are numbered $1, 2, 3, 4, 5, 6$ and $7$, in that order.
You are told the following:
$\bullet$ No two adjacent boxes hold the same contents.
$\bullet$ Box $4$ is empty.
$\bullet$ There is one more $\$10$ prize to the right of the jackpot than there is to the left.
Which box holds the jackpot?
[b]p12.[/b] Let $a$ and $b$ be real numbers such that $a + b = 8$. Let $c$ be the minimum possible value of $x^2 + ax + b$ over all real numbers $x$. Find the maximum possible value of $c$ over all such $a$ and $b$.
[u]Round 5[/u]
[b]p13.[/b] Let $ABCD$ be a rectangle with $AB = 10$ and $BC = 12$. Let M be the midpoint of $CD$, and $P$ be a point on $BM$ such that $BP = BC$. Find the area of $ABPD$.
[b]p14.[/b] The number $19$ has the following properties:
$\bullet$ It is a $2$-digit positive integer.
$\bullet$ It is the two leading digits of a $4$-digit perfect square, because $1936 = 44^2$.
How many numbers, including $19$, satisfy these two conditions?
[b]p15.[/b] In a $3 \times 3$ grid, each unit square is colored either black or white. A coloring is considered “nice” if there is at most one white square in each row or column. What is the total number of nice colorings? Rotations and reflections of a coloring are considered distinct. (For example, in the three squares shown below, only the rightmost one has a nice coloring.
[img]https://cdn.artofproblemsolving.com/attachments/e/4/e6932c822bec77aa0b07c98d1789e58416b912.png[/img]
PS. You should use hide for answers. Rest rounds have been posted [url=https://artofproblemsolving.com/community/c4h2786958p24498425]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 Online Math Open Problems, 41
While there do not exist pairwise distinct real numbers $a,b,c$ satisfying $a^2+b^2+c^2 = ab+bc+ca$, there do exist complex numbers with that property. Let $a,b,c$ be complex numbers such that $a^2+b^2+c^2 = ab+bc+ca$ and $|a+b+c| = 21$. Given that $|a-b| = 2\sqrt{3}$, $|a| = 3\sqrt{3}$, compute $|b|^2+|c|^2$.
[hide="Clarifications"]
[list]
[*] The problem should read $|a+b+c| = 21$. An earlier version of the test read $|a+b+c| = 7$; that value is incorrect.
[*] $|b|^2+|c|^2$ should be a positive integer, not a fraction; an earlier version of the test read ``... for relatively prime positive integers $m$ and $n$. Find $m+n$.''[/list][/hide]
[i]Ray Li[/i]
2018 Peru EGMO TST, 3
Let $ABC$ be an acute-angled triangle with circumradius $R$ less than the sides of $ABC$, let $H$ and $O$ be the orthocenter and circuncenter of $ABC$, respectively. The angle bisectors of $\angle ABH$ and $\angle ACH$ intersects in the point $A_1$, analogously define $B_1$ and $C_1$. If $E$ is the midpoint of $HO$, prove that
$EA_1+EB_1+EC_1=p-\frac{3R}{2}$
where $p$ is the semiperimeter of $ABC$
XMO (China) 2-15 - geometry, 14.3
In quadrilateral $ABCD$, $E$ and $F$ are midpoints of $AB$ and $CD$, and $G$ is the intersection of $AD$ with $BC$. $P$ is a point within the quadrilateral, such that $PA=PB$, $PC=PD$, and $\angle APB+\angle CPD=180^{\circ}$. Prove that $PG$ and $EF$ are parallel.
2021 Science ON all problems, 2
Consider the acute-angled triangle $ABC$, with orthocentre $H$ and circumcentre $O$. $D$ is the intersection point of lines $AH$ and $BC$ and $E$ lies on $\overline{AH}$ such that $AE=DH$.
Suppose $EO$ and $BC$ meet at $F$. Prove that $BD=CF$.
[i] (Călin Pop & Vlad Robu) [/i]
2015 Middle European Mathematical Olympiad, 6
Let $I$ be the incentre of triangle $ABC$ with $AB>AC$ and let the line $AI$ intersect the side $BC$ at $D$. Suppose that point $P$ lies on the segment $BC$ and satisfies $PI=PD$. Further, let $J$ be the point obtained by reflecting $I$ over the perpendicular bisector of $BC$, and let $Q$ be the other intersection of the circumcircles of the triangles $ABC$ and $APD$. Prove that $\angle BAQ=\angle CAJ$.
1983 Vietnam National Olympiad, 3
Let be given a tetrahedron whose any two opposite edges are equal. A plane varies so that its intersection with the tetrahedron is a quadrilateral. Find the positions of the plane for which the perimeter of this quadrilateral is minimum, and find the locus of the centroid for those quadrilaterals with the minimum perimeter.
1964 Spain Mathematical Olympiad, 5
Given a regular pentagon, its five diagonals are drawn. How many triangles do appear in the figure? Classify the set of triangles in classes of equal triangles.
2001 Chile National Olympiad, 5
On a right triangle of paper, two points $A$ and $B$ have been painted. You have scissors and you have the right to make cuts (on paper) as follows: cut through a height of the given triangle. In doing so, remove, without the respective altitude, one of the two triangles and continue the process. Prove that after a finite number of cuts you can separate points $A$ and $B$ leaving one of them outside the remaining triangles.
2012 AIME Problems, 14
Complex numbers $a$, $b$ and $c$ are the zeros of a polynomial $P(z) = z^3+qz+r$, and $|a|^2+|b|^2+|c|^2=250$. The points corresponding to $a$, $b$, and $c$ in the complex plane are the vertices of a right triangle with hypotenuse $h$. Find $h^2$.
2002 Germany Team Selection Test, 2
Let $A_1$ be the center of the square inscribed in acute triangle $ABC$ with two vertices of the square on side $BC$. Thus one of the two remaining vertices of the square is on side $AB$ and the other is on $AC$. Points $B_1,\ C_1$ are defined in a similar way for inscribed squares with two vertices on sides $AC$ and $AB$, respectively. Prove that lines $AA_1,\ BB_1,\ CC_1$ are concurrent.
2008 Baltic Way, 15
Some $1\times 2$ dominoes, each covering two adjacent unit squares, are placed on a board of size $n\times n$ such that no two of them touch (not even at a corner). Given that the total area covered by the dominoes is $2008$, find the least possible value of $n$.
2008 Harvard-MIT Mathematics Tournament, 9
Let $ ABC$ be a triangle, and $ I$ its incenter. Let the incircle of $ ABC$ touch side $ BC$ at $ D$, and let lines $ BI$ and $ CI$ meet the circle with diameter $ AI$ at points $ P$ and $ Q$, respectively. Given $ BI \equal{} 6, CI \equal{} 5, DI \equal{} 3$, determine the value of $ \left( DP / DQ \right)^2$.
2013 Math Hour Olympiad, 6-7
[u]Round 1[/u]
[b]p1.[/b] Goldilocks enters the home of the three bears – Papa Bear, Mama Bear, and Baby Bear. Each bear is wearing a different-colored shirt – red, green, or blue. All the bears look the same to Goldilocks, so she cannot otherwise tell them apart.
The bears in the red and blue shirts each make one true statement and one false statement.
The bear in the red shirt says: “I'm Blue's dad. I'm Green's daughter.”
The bear in the blue shirt says: “Red and Green are of opposite gender. Red and Green are my parents.”
Help Goldilocks find out which bear is wearing which shirt.
[b]p2.[/b] The University of Washington is holding a talent competition. The competition has five contests: math, physics, chemistry, biology, and ballroom dancing. Any student can enter into any number of the contests but only once for each one. For example, a student may participate in math, biology, and ballroom.
It turned out that each student participated in an odd number of contests. Also, each contest had an odd number of participants. Was the total number of contestants odd or even?
[b]p3.[/b] The $99$ greatest scientists of Mars and Venus are seated evenly around a circular table. If any scientist sees two colleagues from her own planet sitting an equal number of seats to her left and right, she waves to them. For example, if you are from Mars and the scientists sitting two seats to your left and right are also from Mars, you will wave to them. Prove that at least one of the $99$ scientists will be waving, no matter how they are seated around the table.
[b]p4.[/b] One hundred boys participated in a tennis tournament in which every player played each other player exactly once and there were no ties. Prove that after the tournament, it is possible for the boys to line up for pizza so that each boy defeated the boy standing right behind him in line.
[b]p5.[/b] To celebrate space exploration, the Science Fiction Museum is going to read Star Wars and Star Trek stories for $24$ hours straight. A different story will be read each hour for a total of $12$ Star Wars stories and $12$ Star Trek stories. George and Gene want to listen to exactly $6$ Star Wars and $6$ Star Trek stories. Show that no matter how the readings are scheduled, the friends can find a block of $12$ consecutive hours to listen to the stories together.
[u]Round 2[/u]
[b]p6.[/b] $2013$ people attended Cinderella's ball. Some of the guests were friends with each other. At midnight, the guests started turning into mice. After the first minute, everyone who had no friends at the ball turned into a mouse. After the second minute, everyone who had exactly one friend among the remaining people turned into a mouse. After the third minute, everyone who had two human friends left in the room turned into a mouse, and so on. What is the maximal number of people that could have been left at the ball after $2013$ minutes?
[b]p7.[/b] Bill and Charlie are playing a game on an infinite strip of graph paper. On Bill’s turn, he marks two empty squares of his choice (not necessarily adjacent) with crosses. Charlie, on his turn, can erase any number of crosses, as long as they are all adjacent to each other. Bill wants to create a line of $2013$ crosses in a row. Can Charlie stop him?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2016 Sharygin Geometry Olympiad, 8
Let $ABC$ be a non-isosceles triangle, let $AA_1$ be its angle bisector and $A_2$ be the touching point of the incircle with side $BC$. The points $B_1,B_2,C_1,C_2$ are defined similarly. Let $O$ and $I$ be the circumcenter and the incenter of triangle $ABC$. Prove that the radical center of the circumcircle of the triangles $AA_1A_2, BB_1B_2, CC_1C_2$ lies on the line $OI$.