Found problems: 25757
2015 Saudi Arabia JBMO TST, 4
Let $ABC$ be a right triangle with the hypotenus $BC.$ Let $BE$ be the bisector of the angle $\angle ABC.$ The circumcircle of the triangle $BCE$ cuts the segment $AB$ again at $F.$ Let $K$ be the projection of $A$ on $BC.$ The point $L$ lies on the segment $AB$ such that $BL=BK.$ Prove that $\frac{AL}{AF}=\sqrt{\frac{BK}{BC}}.$
2008 China Western Mathematical Olympiad, 2
Given $ x,y,z\in (0,1)$ satisfying that
$ \sqrt{\frac{1 \minus{} x}{yz}} \plus{} \sqrt{\frac{1 \minus{} y}{xz}} \plus{} \sqrt{\frac{1 \minus{} z}{xy}} \equal{} 2$.
Find the maximum value of $ xyz$.
2019 South East Mathematical Olympiad, 2
Two circles $\Gamma_1$ and $\Gamma_2$ intersect at $A,B$. Points $C,D$ lie on $\Gamma_1$, points $E,F$ lie on $\Gamma_2$ such that $A,B$ lies on segments $CE,DF$ respectively and segments $CE,DF$ do not intersect. Let $CF$ meet $\Gamma_1,\Gamma_2$ again at $K,L$ respectively, and $DE$ meet $\Gamma_1,\Gamma_2$ at $M,N$ respectively. If the circumcircles of $\triangle ALM$ and $\triangle BKN$ are tangent, prove that the radii of these two circles are equal.
1988 IMO Shortlist, 3
The triangle $ ABC$ is inscribed in a circle. The interior bisectors of the angles $ A,B$ and $ C$ meet the circle again at $ A', B'$ and $ C'$ respectively. Prove that the area of triangle $ A'B'C'$ is greater than or equal to the area of triangle $ ABC.$
2012 Paraguay Mathematical Olympiad, 5
Let $ABC$ be an equilateral triangle. Let $Q$ be a random point on $BC$, and let $P$ be the meeting point of $AQ$ and the circumscribed circle of $\triangle ABC$.
Prove that $\frac{1}{PQ}=\frac{1}{PB}+\frac{1}{PC}$.
2019 Girls in Mathematics Tournament, 2
Let $ABC$ be a right triangle with hypotenuse $BC$ and center $I$. Let bisectors of the angles $\angle B$ and $\angle C$ intersect the sides $AC$ and $AB$ in$ D$ and $E$, respectively. Let $P$ and $Q$ be the feet of the perpendiculars of the points $D$ and $E$ on the side $BC$. Prove that $I$ is the circumcenter of $APQ$.
1971 AMC 12/AHSME, 35
Each circle in an infinite sequence with decreasing radii is tangent externally to the one following it and to both sides of a given right angle. The ratio of the area of the first circle to the sum of areas of all other circles in the sequence, is
$\textbf{(A) }(4+3\sqrt{2}):4\qquad\textbf{(B) }9\sqrt{2}:2\qquad\textbf{(C) }(16+12\sqrt{2}):1\qquad$
$\textbf{(D) }(2+2\sqrt{2}):1\qquad \textbf{(E) }3+2\sqrt{2}):1$
2003 AMC 12-AHSME, 13
The polygon enclosed by the solid lines in the figure consists of $ 4$ congruent squares joined edge-to-edge. One more congruent square is attached to an edge at one of the nine positions indicated. How many of the nine resulting polygons can be folded to form a cube with one face missing?
[asy]unitsize(10mm);
defaultpen(fontsize(10pt));
pen finedashed=linetype("4 4");
filldraw((1,1)--(2,1)--(2,2)--(4,2)--(4,3)--(1,3)--cycle,grey,black+linewidth(.8pt));
draw((0,1)--(0,3)--(1,3)--(1,4)--(4,4)--(4,3)--
(5,3)--(5,2)--(4,2)--(4,1)--(2,1)--(2,0)--(1,0)--(1,1)--cycle,finedashed);
draw((0,2)--(2,2)--(2,4),finedashed);
draw((3,1)--(3,4),finedashed);
label("$1$",(1.5,0.5));
draw(circle((1.5,0.5),.17));
label("$2$",(2.5,1.5));
draw(circle((2.5,1.5),.17));
label("$3$",(3.5,1.5));
draw(circle((3.5,1.5),.17));
label("$4$",(4.5,2.5));
draw(circle((4.5,2.5),.17));
label("$5$",(3.5,3.5));
draw(circle((3.5,3.5),.17));
label("$6$",(2.5,3.5));
draw(circle((2.5,3.5),.17));
label("$7$",(1.5,3.5));
draw(circle((1.5,3.5),.17));
label("$8$",(0.5,2.5));
draw(circle((0.5,2.5),.17));
label("$9$",(0.5,1.5));
draw(circle((0.5,1.5),.17));[/asy]
$ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6$
Cono Sur Shortlist - geometry, 2005.G5
Let $O$ be the circumcenter of an acute triangle $ABC$ and $A_1$ a point of the minor arc $BC$ of the circle $ABC$ . Let $A_2$ and $A_3$ be points on sides $AB$ and $AC$ respectively such that $\angle BA_1A_2=\angle OAC$ and $\angle CA_1A_3=\angle OAB$ . Points $B_2, B_3, C_2$ and $C_3$ are similarly constructed, with $B_2$ in $BC, B_3$ in $AB, C_2$ in $AC$ and $C_3$ in $BC$. Prove that lines $A_2A_3, B_2B_3$ and $C_2C_3$ are concurrent.
2019 Final Mathematical Cup, 1
Let $ABC$ be an acute triangle with $AB<AC<BC$ and let $D$ be a point on it's extension of $BC$ towards $C$. Circle $c_1$, with center $A$ and radius $AD$, intersects lines $AC,AB$ and $CB$ at points $E,F$, and $G$ respectively. Circumscribed circle $c_2$ of triangle $AFG$ intersects again lines $FE,BC,GE$ and $DF$ at points $J,H,H' $ and $J'$ respectively. Circumscribed circle $c_3$ of triangle $ADE$ intersects again lines $FE,BC,GE$ and $DF$ at points $I,K,K' $ and $I' $ respectively. Prove that the quadrilaterals $HIJK$ and $H'I'J'K '$ are cyclic and the centers of their circumscribed circles coincide.
by Evangelos Psychas, Greece
Denmark (Mohr) - geometry, 1998.3
The points lie on three parallel lines with distances as indicated in the figure $A, B$ and $C$ such that square $ABCD$ is a square. Find the area of this square.
[img]https://1.bp.blogspot.com/-xeFvahqPVyM/XzcFfB0-NfI/AAAAAAAAMYA/SV2XU59uBpo_K99ZBY43KSSOKe-veOdFQCLcBGAsYHQ/s0/1998%2BMohr%2Bp3.png[/img]
2004 JBMO Shortlist, 4
Let $ABC$ be a triangle with $m (\angle C) = 90^\circ$ and the points $D \in [AC], E\in [BC]$. Inside the triangle we construct the semicircles $C_1, C_2, C_3, C_4$ of diameters $[AC], [BC], [CD], [CE]$ and let $\{C, K\} = C_1 \cap C_2, \{C, M\} =C_3 \cap C_4, \{C, L\} = C_2 \cap C_3, \{C, N\} =C_1 \cap C_4$. Show that points $K, L, M, N$ are concyclic.
2007 Indonesia TST, 1
Let $ ABCD$ be a cyclic quadrilateral and $ O$ be the intersection of diagonal $ AC$ and $ BD$. The circumcircles of triangle $ ABO$ and the triangle $ CDO$ intersect at $ K$. Let $ L$ be a point such that the triangle $ BLC$ is similar to $ AKD$ (in that order). Prove that if $ BLCK$ is a convex quadrilateral, then it has an incircle.
2018 Thailand TSTST, 3
Let $BC$ be a chord not passing through the center of a circle $\omega$. Point $A$ varies on the major arc $BC$. Let $E$ and $F$ be the projection of $B$ onto $AC$, and of $C$ onto $AB$ respectively. The tangents to the circumcircle of $\vartriangle AEF$ at $E, F$ intersect at $P$.
(a) Prove that $P$ is independent of the choice of $A$.
(b) Let $H$ be the orthocenter of $\vartriangle ABC$, and let $T$ be the intersection of $EF$ and $BC$. Prove that $TH \perp AP$.
2008 Harvard-MIT Mathematics Tournament, 32
Cyclic pentagon $ ABCDE$ has side lengths $ AB\equal{}BC\equal{}5$, $ CD\equal{}DE\equal{}12$, and $ AE \equal{} 14$. Determine the radius of its circumcircle.
1979 IMO, 1
We consider a point $P$ in a plane $p$ and a point $Q \not\in p$. Determine all the points $R$ from $p$ for which \[ \frac{QP+PR}{QR} \] is maximum.
Kyiv City MO Seniors 2003+ geometry, 2004.11.2
Given a triangle $ABC$, in which $\angle B> 90^o$. Perpendicular bisector of the side $AB$ intersects the side $AC$ at the point $M$, and the perpendicular bisector of the side $AC$ intersects the extension of the side $AB$ beyond the vertex $B$ at point $N$. It is known that the segments $MN$ and $BC$ are equal and intersect at right angles. Find the values of all angles of triangle $ABC$.
2019 Bulgaria National Olympiad, 6
Let $ABCDEF$ be an inscribed hexagon with
$$AB.CD.EF=BC.DE.FA$$
Let $B_1$ be the reflection point of $B$ with respect to $AC$ and $D_1$ be the reflection point of $D$ with respect to $CE,$ and finally let $F_1$ be the reflection point of $F$ with respect to $AE.$ Prove that $\triangle B_1D_1F_1\sim BDF.$
2006 Flanders Math Olympiad, 2
Let $\triangle ABC$ be an equilateral triangle and let $P$ be a point on $\left[AB\right]$.
$Q$ is the point on $BC$ such that $PQ$ is perpendicular to $AB$. $R$ is the point on $AC$ such that $QR$ is perpendicular to $BC$. And $S$ is the point on $AB$ such that $RS$ is perpendicular to $AC$.
$Q'$ is the point on $BC$ such that $PQ'$ is perpendicular to $BC$. $R'$ is the point on $AC$ such that $Q'R'$ is perpendicular to $AC$. And $S'$ is the point on $AB$ such that $R'S'$ is perpendicular to $AB$.
Determine $\frac{|PB|}{|AB|}$ if $S=S'$.
1996 IMO Shortlist, 5
Let $ ABCDEF$ be a convex hexagon such that $ AB$ is parallel to $ DE$, $ BC$ is parallel to $ EF$, and $ CD$ is parallel to $ FA$. Let $ R_{A},R_{C},R_{E}$ denote the circumradii of triangles $ FAB,BCD,DEF$, respectively, and let $ P$ denote the perimeter of the hexagon. Prove that
\[ R_{A} \plus{} R_{C} \plus{} R_{E}\geq \frac {P}{2}.
\]
2010 Kazakhstan National Olympiad, 5
Let $O$ be the circumcircle of acute triangle $ABC$, $AD$-altitude of $ABC$ ($ D \in BC$), $ AD \cap CO =E$, $M$-midpoint of $AE$, $F$-feet of perpendicular from $C$ to $AO$.
Proved that point of intersection $OM$ and $BC$ lies on circumcircle of triangle $BOF$
1996 Chile National Olympiad, 6
Two circles, $C$ and $K$, are secant at $A$ and $B$. Let $P$ be a point on the arc $AB$ of $C$. Lines $PA$ and $PB$ intersect $K$ again at $R$ and $S$ respectively. Let $P'$ be another point at same arc as $P$, so that lines $P'A$ and $P'B$ again intersect $K$ at $R'$ and $S'$, respectively. Prove that the arcs $RS$ and $R'S'$ have equal measures.
[img]https://cdn.artofproblemsolving.com/attachments/2/4/88693c36159179fb2b098b671a2f8281b37aae.png[/img]
2023 Indonesia Regional, 1
Let $ABCD$ be a square with side length $43$ and points $X$ and $Y$ lies on sides $AD$ and $BC$ respectively such that the ratio of the area of $ABYX$ to the area of $CDXY$ is $20 : 23$ . Find the maximum possible length of $XY$.
2023 Yasinsky Geometry Olympiad, 3
Let $I$ be the center of the inscribed circle of the triangle $ABC$. The inscribed circle is tangent to sides $BC$ and $AC$ at points $K_1$ and $K_2$ respectively. Using a ruler and a compass, find the center of excircle for triangle $CK_1K_2$ which is tangent to side $CK_2$, in at most $4$ steps (each step is to draw a circle or a line).
(Hryhorii Filippovskyi, Volodymyr Brayman)
2008 AMC 12/AHSME, 11
Three cubes are each formed from the pattern shown. They are then stacked on a table one on top of another so that the $ 13$ visible numbers have the greatest possible sum. What is that sum?
[asy]unitsize(.8cm);
pen p = linewidth(.8pt);
draw(shift(-2,0)*unitsquare,p);
label("1",(-1.5,0.5));
draw(shift(-1,0)*unitsquare,p);
label("2",(-0.5,0.5));
label("32",(0.5,0.5));
draw(shift(1,0)*unitsquare,p);
label("16",(1.5,0.5));
draw(shift(0,1)*unitsquare,p);
label("4",(0.5,1.5));
draw(shift(0,-1)*unitsquare,p);
label("8",(0.5,-0.5));[/asy]$ \textbf{(A)}\ 154 \qquad \textbf{(B)}\ 159 \qquad \textbf{(C)}\ 164 \qquad \textbf{(D)}\ 167 \qquad \textbf{(E)}\ 189$