This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2019 Pan-African Shortlist, G3

Let $ABCD$ be a cyclic quadrilateral with its diagonals intersecting at $E$. Let $M$ be the midpoint of $AB$. Suppose that $ME$ is perpendicular to $CD$. Show that either $AC$ is perpendicular to $BD$, or $AB$ is parallel to $CD$.

2023 Centroamerican and Caribbean Math Olympiad, 5

Let $ABC$ be an acute-angled triangle with $AB < AC$ and $\Gamma$ the circumference that passes through $A,\ B$ and $C$. Let $D$ be the point diametrically opposite $A$ on $\Gamma$ and $\ell$ the tangent through $D$ to $\Gamma$. Let $P, Q$ and $R$ be the intersection points of $B C$ with $\ell$, of $A P$ with $\Gamma$ such that $Q \neq A$ and of $Q D$ with the $A$-altitude of the triangle $ABC$, respectively. Define $S$ to be the intersection of $AB$ with $\ell$ and $T$ to be the intersection of $A C$ with $\ell$. Show that $S$ and $T$ lie on the circumference that passes through $A, Q$ and $R$.

2012 Sharygin Geometry Olympiad, 6

Point $C_{1}$ of hypothenuse $AC$ of a right-angled triangle $ABC$ is such that $BC = CC_{1}$. Point $C_{2}$ on cathetus $AB$ is such that $AC_{2} = AC_{1}$; point $A_{2}$ is defined similarly. Find angle $AMC$, where $M$ is the midpoint of $A_{2}C_{2}$.

2003 Belarusian National Olympiad, 3

Two triangles are said to be [i]twins [/i] if one of them is an image of the other one under a parallel projection. Prove that two triangles are twins if and only if either at least a side of one of them equals a side of another or both the triangles have equal segments that connect the corresponding vertices with some points on the opposite sides which divide these sides in the same ratio. (E. Barabanov)

2017 HMNT, 2

Tags: geometry
[b]H[/b]orizontal parallel segments $AB=10$ and $CD=15$ are the bases of trapezoid $ABCD$. Circle $\gamma$ of radius $6$ has center within the trapezoid and is tangent to sides $AB$, $BC$, and $DA$. If side $CD$ cuts out an arc of $\gamma$ measuring $120^{\circ}$, find the area of $ABCD$.

2015 German National Olympiad, 5

Let $ABCD$ be a convex quadrilateral such that the circle with diameter $AB$ touches the line $CD$. Prove that that the circle with diameter $CD$ touches the line $AB$ if and only if $BC$ and $AD$ are parallel.

2009 Indonesia TST, 2

Two cirlces $ C_1$ and $ C_2$, with center $ O_1$ and $ O_2$ respectively, intersect at $ A$ and $ B$. Let $ O_1$ lies on $ C_2$. A line $ l$ passes through $ O_1$ but does not pass through $ O_2$. Let $ P$ and $ Q$ be the projection of $ A$ and $ B$ respectively on the line $ l$ and let $ M$ be the midpoint of $ \overline{AB}$. Prove that $ MPQ$ is an isoceles triangle.

2016 CHMMC (Fall), 9

Tags: geometry
In quadrilateral $ABCD$, $AB = DB$ and $AD = BC$. If $\angle ABD = 36^{\circ}$ and $\angle BCD = 54^{\circ}$, find $\angle ADC$ in degrees.

2012 Indonesia TST, 2

Tags: geometry
Let $\omega$ be a circle with center $O$, and let $l$ be a line not intersecting $\omega$. $E$ is a point on $l$ such that $OE$ is perpendicular with $l$. Let $M$ be an arbitrary point on $M$ different from $E$. Let $A$ and $B$ be distinct points on the circle $\omega$ such that $MA$ and $MB$ are tangents to $\omega$. Let $C$ and $D$ be the foot of perpendiculars from $E$ to $MA$ and $MB$ respectively. Let $F$ be the intersection of $CD$ and $OE$. As $M$ moves, determine the locus of $F$.

2010 AMC 12/AHSME, 7

Logan is constructing a scaled model of his town. The city's water tower stands $ 40$ meters high, and the top portion is a sphere that holds $ 100,000$ liters of water. Logan's miniature water tower holds $ 0.1$ liters. How tall, in meters, should Logan make his tower? $ \textbf{(A)}\ 0.04\qquad \textbf{(B)}\ \frac{0.4}{\pi}\qquad \textbf{(C)}\ 0.4\qquad \textbf{(D)}\ \frac{4}{\pi}\qquad \textbf{(E)}\ 4$

MathLinks Contest 1st, 1

Tags: geometry
In a triangle $ABC$, $\angle B = 70^o$, $\angle C = 50^o$. A point $M$ is taken on the side $AB$ such that $\angle MCB = 40^o$ , and a point $N$ is taken on the side $AC$ such that $\angle NBC = 50^o$. Find $\angle NMC$.

2004 China Team Selection Test, 1

Tags: geometry
Let $\angle XOY = \frac{\pi}{2}$; $P$ is a point inside $\angle XOY$ and we have $OP = 1; \angle XOP = \frac{\pi}{6}.$ A line passes $P$ intersects the Rays $OX$ and $OY$ at $M$ and $N$. Find the maximum value of $OM + ON - MN.$

2021 Malaysia IMONST 1, 11

Tags: circles , angle , geometry
Given two points $ A$ and $ B$ and two circles, $\Gamma_1$ with center $A$ and passing through $ B$, and $\Gamma_2$ with center $ B$ and passing through $ A$. Line $AB$ meets $\Gamma_2$ at point $C$. Point $D$ lies on $\Gamma_2$ such that $\angle CDB = 57^o$. Line $BD$ meets $\Gamma_1$ at point $E$. What is $\angle CAE$, in degrees?

2004 Oral Moscow Geometry Olympiad, 6

In the tetrahedron $DABC$ : $\angle ACB = \angle ADB$, $(CD) \perp (ABC)$. In triangle $ABC$, the altitude $h$ drawn to the side $AB$ and the distance $d$ from the center of the circumscribed circle to this side are given. Find the length of the $CD$.

2022 Indonesia MO, 3

Let $ABCD$ be a rectangle. Points $E$ and $F$ are on diagonal $AC$ such that $F$ lies between $A$ and $E$; and $E$ lies between $C$ and $F$. The circumcircle of triangle $BEF$ intersects $AB$ and $BC$ at $G$ and $H$ respectively, and the circumcircle of triangle $DEF$ intersects $AD$ and $CD$ at $I$ and $J$ respectively. Prove that the lines $GJ, IH$ and $AC$ concur at a point.

2015 Tuymaada Olympiad, 2

$D$ is midpoint of $AC$ for $\triangle ABC$. Bisectors of $\angle ACB,\angle ABD$ are perpendicular. Find max value for $\angle BAC$ [i](S. Berlov)[/i]

2005 South East Mathematical Olympiad, 5

Line $l$ tangents unit circle $S$ in point $P$. Point $A$ and circle $S$ are on the same side of $l$, and the distance from $A$ to $l$ is $h$ ($h > 2$). Two tangents of circle $S$ are drawn from $A$, and intersect line $l$ at points $B$ and $C$ respectively. Find the value of $PB \cdot PC$.

2011 JBMO Shortlist, 4

Tags: geometry
Point ${D}$ lies on the side ${BC}$ of $\vartriangle ABC$. The circumcenters of $\vartriangle ADC$ and $\vartriangle BAD$ are ${O_1}$ and ${O_2}$, respectively and ${O_1O_2\parallel AB}$. The orthocenter of $\vartriangle ADC$is ${H}$ and ${AH=O_1O_2}.$ Find the angles of $\vartriangle ABC$ if $2m\left( \angle C \right)=3m\left( \angle B \right).$

2023 China National Olympiad, 2

Tags: geometry
Let $\triangle ABC$ be an equilateral triangle of side length 1. Let $D,E,F$ be points on $BC,AC,AB$ respectively, such that $\frac{DE}{20} = \frac{EF}{22} = \frac{FD}{38}$. Let $X,Y,Z$ be on lines $BC,CA,AB$ respectively, such that $XY\perp DE, YZ\perp EF, ZX\perp FD$. Find all possible values of $\frac{1}{[DEF]} + \frac{1}{[XYZ]}$.

2012 Pan African, 1

Tags: geometry
$AB$ is a chord (not a diameter) of a circle with centre $O$. Let $T$ be a point on segment $OB$. The line through $T$ perpendicular to $OB$ meets $AB$ at $C$ and the circle at $D$ and $E$. Denote by $S$ the orthogonal projection of $T$ onto $AB$ . Prove that $AS \cdot BC = TE \cdot TD$.

2016 Japan Mathematical Olympiad Preliminary, 8

Tags: geometry
Let $\omega$ be an incircle of triangle $ABC$. Let $D$ be a point on segment $BC$, which is tangent to $\omega$. Let $X$ be an intersection of $AD$ and $\omega$ against $D$. If $AX : XD : BC = 1 : 3 : 10$, a radius of $\omega$ is $1$, find the length of segment $XD$. Note that $YZ$ expresses the length of segment $YZ$.

2004 Romania National Olympiad, 3

Let $H$ be the orthocenter of the acute triangle $ABC$. Let $BB'$ and $CC'$ be altitudes of the triangle ($B^{\prime} \in AC$, $C^{\prime} \in AB$). A variable line $\ell$ passing through $H$ intersects the segments $[BC']$ and $[CB']$ in $M$ and $N$. The perpendicular lines of $\ell$ from $M$ and $N$ intersect $BB'$ and $CC'$ in $P$ and $Q$. Determine the locus of the midpoint of the segment $[ PQ]$. [i]Gheorghe Szolosy[/i]

2011 Olympic Revenge, 2

Let $p$ be a fixed prime. Determine all the integers $m$, as function of $p$, such that there exist $a_1, a_2, \ldots, a_p \in \mathbb{Z}$ satisfying \[m \mid a_1^p + a_2^p + \cdots + a_p^p - (p+1).\]

2008 Harvard-MIT Mathematics Tournament, 19

Let $ ABCD$ be a regular tetrahedron, and let $ O$ be the centroid of triangle $ BCD$. Consider the point $ P$ on $ AO$ such that $ P$ minimizes $ PA \plus{} 2(PB \plus{} PC \plus{} PD)$. Find $ \sin \angle PBO$.

2000 AIME Problems, 14

In triangle $ABC,$ it is given that angles $B$ and $C$ are congruent. Points $P$ and $Q$ lie on $\overline{AC}$ and $\overline{AB},$ respectively, so that $AP=PQ=QB=BC.$ Angle $ACB$ is $r$ times as large as angle $APQ,$ where $r$ is a positive real number. Find the greatest integer that does not exceed $1000r.$