This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

Brazil L2 Finals (OBM) - geometry, 2004.5

Let $D$ be the midpoint of the hypotenuse $AB$ of a right triangle $ABC$. Let $O_1$ and $O_2$ be the circumcenters of the $ADC$ and $DBC$ triangles, respectively. a) Prove that $\angle O_1DO_2$ is right. b) Prove that $AB$ is tangent to the circle of diameter $O_1O_2$ .

2009 Princeton University Math Competition, 2

Tetrahedron $ABCD$ has sides of lengths, in increasing order, $7, 13, 18, 27, 36, 41$. If $AB=41$, then what is the length of $CD$?

2005 Georgia Team Selection Test, 5

Let $ ABCD$ be a convex quadrilateral. Points $ P,Q$ and $ R$ are the feets of the perpendiculars from point $ D$ to lines $ BC, CA$ and $ AB$, respectively. Prove that $ PQ\equal{}QR$ if and only if the bisectors of the angles $ ABC$ and $ ADC$ meet on segment $ AC$.

2019 India Regional Mathematical Olympiad, 6

Let $k$ be a positive real number. In the $X-Y$ coordinate plane, let $S$ be the set of all points of the form $(x,x^2+k)$ where $x\in\mathbb{R}$. Let $C$ be the set of all circles whose center lies in $S$, and which are tangent to $X$-axis. Find the minimum value of $k$ such that any two circles in $C$ have at least one point of intersection.

MathLinks Contest 2nd, 6.2

Tags: geometry
A triangle $ABC$ is located in a cartesian plane $\pi$ and has a perimeter of $3 + 2\sqrt3$. It is known that the triangle $ABC$ has the property that any triangle in the plane $\pi$, congruent with it, contains inside or on the boundary at least one lattice point (a point with both coordinates integers). Prove that the triangle $ABC$ is equilateral.

2009 National Olympiad First Round, 22

$ (a_n)_{n \equal{} 0}^\infty$ is a sequence on integers. For every $ n \ge 0$, $ a_{n \plus{} 1} \equal{} a_n^3 \plus{} a_n^2$. The number of distinct residues of $ a_i$ in $ \pmod {11}$ can be at most? $\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 6$

2015 Tournament of Towns, 7

It is well-known that if a quadrilateral has the circumcircle and the incircle with the same centre then it is a square. Is the similar statement true in 3 dimensions: namely, if a cuboid is inscribed into a sphere and circumscribed around a sphere and the centres of the spheres coincide, does it imply that the cuboid is a cube? (A cuboid is a polyhedron with 6 quadrilateral faces such that each vertex belongs to $3$ edges.) [i]($10$ points)[/i]

2010 Iran MO (3rd Round), 3

in a quadrilateral $ABCD$ digonals are perpendicular to each other. let $S$ be the intersection of digonals. $K$,$L$,$M$ and $N$ are reflections of $S$ to $AB$,$BC$,$CD$ and $DA$. $BN$ cuts the circumcircle of $SKN$ in $E$ and $BM$ cuts the circumcircle of $SLM$ in $F$. prove that $EFLK$ is concyclic.(20 points)

2016 AIME Problems, 4

A right prism with height $h$ has bases that are regular hexagons with sides of length $12$. A vertex $A$ of the prism and its three adjacent vertices are the vertices of a triangular pyramid. The dihedral angle (the angle between the two planes) formed by the face of the pyramid that lies in a base of the prism and the face of the pyramid that does not contain $A$ measures $60^\circ$. Find $h^2$.

2008 Sharygin Geometry Olympiad, 1

Tags: geometry
(B.Frenkin) An inscribed and circumscribed $ n$-gon is divided by some line into two inscribed and circumscribed polygons with different numbers of sides. Find $ n$.

2006 JBMO ShortLists, 11

Tags: geometry
Circles $ \mathcal{C}_1$ and $ \mathcal{C}_2$ intersect at $ A$ and $ B$. Let $ M\in AB$. A line through $ M$ (different from $ AB$) cuts circles $ \mathcal{C}_1$ and $ \mathcal{C}_2$ at $ Z,D,E,C$ respectively such that $ D,E\in ZC$. Perpendiculars at $ B$ to the lines $ EB,ZB$ and $ AD$ respectively cut circle $ \mathcal{C}_2$ in $ F,K$ and $ N$. Prove that $ KF\equal{}NC$.

2020 Czech-Austrian-Polish-Slovak Match, 6

Let $ABC$ be an acute triangle. Let $P$ be a point such that $PB$ and $PC$ are tangent to circumcircle of $ABC$. Let $X$ and $Y$ be variable points on $AB$ and $AC$, respectively, such that $\angle XPY = 2\angle BAC$ and $P$ lies in the interior of triangle $AXY$. Let $Z$ be the reflection of $A$ across $XY$. Prove that the circumcircle of $XYZ$ passes through a fixed point. (Dominik Burek, Poland)

MathLinks Contest 6th, 3.3

We say that a set of points $M$ in the plane is convex if for any two points $A, B \in M$, all the points from the segment $(AB)$ also belong to $M$. Let $n \ge 2$ be an integer and let $F$ be a family of $n$ disjoint convex sets in the plane. Prove that there exists a line $\ell$ in the plane, a set $M \in F$ and a subset $S \subset F$ with at least $\lceil \frac{n}{12} \rceil $ elements such that $M$ is contained in one closed half-plane determined by $\ell$, and all the sets $N \in S$ are contained in the complementary closed half-plane determined by $\ell$.

V Soros Olympiad 1998 - 99 (Russia), 11.6

Cut the $10$ cm $x 20$ cm rectangle into two pieces with one straight cut so that they can be placed inside the $19.4$ cm diameter circle without intersecting.

2014 NIMO Problems, 2

Two points $A$ and $B$ are selected independently and uniformly at random along the perimeter of a unit square with vertices at $(0,0)$, $(1,0)$, $(0,1)$, and $(1,1)$. The probability that the $y$-coordinate of $A$ is strictly greater than the $y$-coordinate of $B$ can be expressed as $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $100m+n$. [i]Proposed by Rajiv Movva[/i]

2013 Stanford Mathematics Tournament, 1

A circle of radius $2$ is inscribed in equilateral triangle $ABC$. The altitude from $A$ to $BC$ intersects the circle at a point $D$ not on $BC$. $BD$ intersects the circle at a point $E$ distinct from $D$. Find the length of $BE$.

2018 Sharygin Geometry Olympiad, 8

Let $I$ be the incenter of fixed triangle $ABC$, and $D$ be an arbitrary point on $BC$. The perpendicular bisector of $AD$ meets $BI,CI$ at $F$ and $E$ respectively. Find the locus of orthocenters of $\triangle IEF$ as $D$ varies.

2017 Taiwan TST Round 2, 1

Tags: geometry
Given a circle and four points $B,C,X,Y$ on it. Assume $A$ is the midpoint of $BC$, and $Z$ is the midpoint of $XY$. Let $L_1,L_2$ be lines perpendicular to $BC$ and pass through $B,C$ respectively. Let the line pass through $X$ and perpendicular to $AX$ intersects $L_1,L_2$ at $X_1,X_2$ respectively. Similarly, let the line pass through $Y$ and perpendicular to $AY$ intersects $L_1,L_2$ at $Y_1,Y_2$ respectively. Assume $X_1Y_2$ intersects $X_2Y_1$ at $P$. Prove that $\angle AZP=90^o.$ [i]Proposed by William Chao[/i]

1997 Baltic Way, 13

Tags: geometry
Five distinct points $A,B,C,D$ and $E$ lie on a line with $|AB|=|BC|=|CD|=|DE|$. The point $F$ lies outside the line. Let $G$ be the circumcentre of the triangle $ADF$ and $H$ the circumcentre of the triangle $BEF$. Show that the lines $GH$ and $FC$ are perpendicular.

2020 Iranian Geometry Olympiad, 1

Tags: midpoint , geometry
Let $M,N,P$ be midpoints of $BC,AC$ and $AB$ of triangle $\triangle ABC$ respectively. $E$ and $F$ are two points on the segment $\overline{BC}$ so that $\angle NEC = \frac{1}{2} \angle AMB$ and $\angle PFB = \frac{1}{2} \angle AMC$. Prove that $AE=AF$. [i]Proposed by Alireza Dadgarnia[/i]

2016 Iran MO (3rd Round), 1

Tags: geometry
Let $ABC$ be an arbitrary triangle,$P$ is the intersection point of the altitude from $C$ and the tangent line from $A$ to the circumcircle. The bisector of angle $A$ intersects $BC$ at $D$ . $PD$ intersects $AB$ at $K$, if $H$ is the orthocenter then prove : $HK\perp AD$

1999 Belarusian National Olympiad, 7

Let [i]O[/i] be the center of circle[i] W[/i]. Two equal chords [i]AB[/i] and [i]CD [/i]of[i] W [/i]intersect at [i]L [/i]such that [i]AL>LB [/i]and [i]DL>LC[/i]. Let [i]M [/i]and[i] N [/i]be points on [i]AL[/i] and [i]DL[/i] respectively such that ([i]ALC[/i])=2*([i]MON[/i]). Prove that the chord of [i]W[/i] passing through [i]M [/i]and [i]N[/i] is equal to [i]AB[/i] and [i]CD[/i].

2000 Bundeswettbewerb Mathematik, 4

Consider the sums of the form $\sum_{k=1}^{n} \epsilon_k k^3,$ where $\epsilon_k \in \{-1, 1\}.$ Is any of these sums equal to $0$ if [b](a)[/b] $n=2000;$ [b](b)[/b] $n=2001 \ ?$

2024 Sharygin Geometry Olympiad, 9.2

Tags: geometry , geo
Points $A, B, C, D$ on the plane do not form a rectangle. Let the sidelengths of triangle $T$ equal $AB+CD$, $AC+BD$, $AD+BC$. Prove that the triangle $T$ is acute-angled.

1962 Vietnam National Olympiad, 3

Let $ ABCD$ is a tetrahedron. Denote by $ A'$, $ B'$ the feet of the perpendiculars from $ A$ and $ B$, respectively to the opposite faces. Show that $ AA'$ and $ BB'$ intersect if and only if $ AB$ is perpendicular to $ CD$. Do they intersect if $ AC \equal{} AD \equal{} BC \equal{} BD$?