This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2020-21 KVS IOQM India, 27

Let $ABC$ be an acute-angled triangle and $P$ be a point in its interior. Let $P_A,P_B$ and $P_c$ be the images of $P$ under reflection in the sides $BC,CA$, and $AB$, respectively. If $P$ is the orthocentre of the triangle $P_AP_BP_C$ and if the largest angle of the triangle that can be formed by the line segments$ PA, PB$. and $PC$ is $x^o$, determine the value of $x$.

1995 Rioplatense Mathematical Olympiad, Level 3, 3

Given a regular tetrahedron with edge $a$, its edges are divided into $n$ equal segments, thus obtaining $n + 1$ points: $2$ at the ends and $n - 1$ inside. The following set of planes is considered: $\bullet$ those that contain the faces of the tetrahedron, and $\bullet$ each of the planes parallel to a face of the tetrahedron and containing at least one of the points determined above. Now all those points $P$ that belong (simultaneously) to four planes of that set are considered. Determine the smallest positive natural $n$ so that among those points $P$ the eight vertices of a square-based rectangular parallelepiped can be chosen.

1998 AMC 12/AHSME, 15

Tags: geometry , ratio
A regular hexagon and an equilateral triangle have equal areas. What is the ratio of the length of a side of the triangle to the length of a side of the hexagon? $ \textbf{(A)}\ \sqrt 3\qquad \textbf{(B)}\ 2\qquad \textbf{(C)}\ \sqrt 6\qquad \textbf{(D)}\ 3\qquad \textbf{(E)}\ 6$

EMCC Guts Rounds, 2018

[u]Round 1[/u] [b]p1.[/b] How many distinct ways are there to scramble the letters in $EXETER$? [b]p2.[/b] Given that $\frac{x - y}{x - z}= 3$, find $\frac{x - z}{y - z}$. [b]p3.[/b] When written in base $10$, $9^9 =\overline{ABC420DEF}.$ Find the remainder when $A + B + C + D + E + F$ is divided by $9$. [u]Round 2[/u] [b]p4.[/b] How many positive integers, when expressed in base $7$, have exactly $3$ digits, but don't contain the digit $3$? [b]p5.[/b] Pentagon $JAMES$ is such that its internal angles satisfy $\angle J = \angle A = \angle M = 90^o$ and $\angle E = \angle S$. If $JA = AM = 4$ and $ME = 2$, what is the area of $JAMES$? [b]p6.[/b] Let $x$ be a real number such that $x = \frac{1+\sqrt{x}}{2}$ . What is the sum of all possible values of $x$? [u]Round 3[/u] [b]p7.[/b] Farmer James sends his favorite chickens, Hen Hao and PEAcock, to compete at the Fermi Estimation All Star Tournament (FEAST). The first problem at the FEAST requires the chickens to estimate the number of boarding students at Eggs-Eater Academy given the number of dorms $D$ and the average number of students per dorm $A$. Hen Hao rounds both $D$ and $A$ down to the nearest multiple of $10$ and multiplies them, getting an estimate of $1200$ students. PEAcock rounds both $D$ and $A$ up to the nearest multiple of $10$ and multiplies them, getting an estimate of $N$ students. What is the maximum possible value of $N$? [b]p8.[/b] Farmer James has decided to prepare a large bowl of egg drop soup for the Festival of Eggs-Eater Annual Soup Tasting (FEAST). To flavor the soup, Hen Hao drops eggs into it. Hen Hao drops $1$ egg into the soup in the first hour, $2$ eggs into the soup in the second hour, and so on, dropping $k$ eggs into the soup in the $k$th hour. Find the smallest positive integer $n$ so that after exactly n hours, Farmer James finds that the number of eggs dropped in his egg drop soup is a multiple of $200$. [b]p9.[/b] Farmer James decides to FEAST on Hen Hao. First, he cuts Hen Hao into $2018$ pieces. Then, he eats $1346$ pieces every day, and then splits each of the remaining pieces into three smaller pieces. How many days will it take Farmer James to eat Hen Hao? (If there are fewer than $1346$ pieces remaining, then Farmer James will just eat all of the pieces.) [u]Round 4[/u] [b]p10.[/b] Farmer James has three baskets, and each basket has one magical egg. Every minute, each magical egg disappears from its basket, and reappears with probability $\frac12$ in each of the other two baskets. Find the probability that after three minutes, Farmer James has all his eggs in one basket. [b]p11.[/b] Find the value of $\frac{4 \cdot 7}{\sqrt{4 +\sqrt7} +\sqrt{4 -\sqrt7}}$. [b]p12.[/b] Two circles, with radius $6$ and radius $8$, are externally tangent to each other. Two more circles, of radius $7$, are placed on either side of this configuration, so that they are both externally tangent to both of the original two circles. Out of these $4$ circles, what is the maximum distance between any two centers? PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2949222p26406222]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Serbia Team Selection Test, 4

Let $T$ be the centroid of triangle $ABC$. Prove that \[ \frac 1{\sin \angle TAC} + \frac 1{\sin \angle TBC} \geq 4 \]

2012 India Regional Mathematical Olympiad, 5

Let $ABC$ be a triangle. Let $D,E$ be points on the segment $BC$ such that $BD=DE=EC$. Let $F$ be the mid-point of $AC$. Let $BF$ intersect $AD$ in $P$ and $AE$ in $Q$ respectively. Determine the ratio of the area of the triangle $APQ$ to that of the quadrilateral $PDEQ$.

2014 Postal Coaching, 4

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.

Brazil L2 Finals (OBM) - geometry, 2017.1

Tags: geometry , trapezoid , area
The points $X, Y,Z$ are marked on the sides $AB, BC,AC$ of the triangle $ABC$, respectively. Points $A',B', C'$ are on the $XZ, XY, YZ$ sides of the triangle $XYZ$, respectively, so that $\frac{AB}{A'B'} = \frac{AB}{A'B'} =\frac{BC}{B'C'}= 2$ and $ABB'A',BCC'B',ACC'A'$ are trapezoids in which the sides of the triangle $ABC$ are bases. a) Determine the ratio between the area of the trapezium $ABB'A'$ and the area of the triangle $A'B'X$. b) Determine the ratio between the area of the triangle $XYZ$ and the area of the triangle $ABC$.

2020 Princeton University Math Competition, B1

You are walking along a road of constant width with sidewalks on each side. You can only walk on the sidewalks or cross the road perpendicular to the sidewalk. Coming up on a turn, you realize that you are on the “outside” of the turn; i.e., you are taking the longer way around the turn. The turn is a circular arc. Assuming that your destination is on the same side of the road as you are currently, let $\theta$ be the smallest turn angle, in radians, that would justify crossing the road and then crossing back after the turn to take the shorter total path to your destination. What is $\lfloor 100 \cdot \theta \rfloor$ ?

2020 Ecuador NMO (OMEC), 5

In triangle $ABC$, $D$ is the middle point of side $BC$ and $M$ is a point on segment $AD$ such that $AM=3MD$. The barycenter of $ABC$ and $M$ are on the inscribed circumference of $ABC$. Prove that $AB+AC>3BC$.

2006 Estonia Math Open Junior Contests, 3

Let ABCD be a parallelogram, M the midpoint of AB and N the intersection of CD and the angle bisector of ABC. Prove that CM and BN are perpendicular iff AN is the angle bisector of DAB.

MMATHS Mathathon Rounds, 2021

[u]Round 4[/u] [b]p10.[/b] How many divisors of $10^{11}$ have at least half as many divisors that $10^{11}$ has? [b]p11.[/b] Let $f(x, y) = \frac{x}{y}+\frac{y}{x}$ and $g(x, y) = \frac{x}{y}-\frac{y}{x} $. Then, if $\underbrace{f(f(... f(f(}_{2021 fs} f(f(1, 2), g(2,1)), 2), 2)... , 2), 2)$ can be expressed in the form $a + \frac{b}{c}$, where $a$, $b$,$c$ are nonnegative integers such that $b < c$ and $gcd(b,c) = 1$, find $a + b + \lceil (\log_2 (\log_2 c)\rceil $ [b]p12.[/b] Let $ABC$ be an equilateral triangle, and let$ DEF$ be an equilateral triangle such that $D$, $E$, and $F$ lie on $AB$, $BC$, and $CA$, respectively. Suppose that $AD$ and $BD$ are positive integers, and that $\frac{[DEF]}{[ABC]}=\frac{97}{196}$. The circumcircle of triangle $DEF$ meets $AB$, $BC$, and $CA$ again at $G$, $H$, and $I$, respectively. Find the side length of an equilateral triangle that has the same area as the hexagon with vertices $D, E, F, G, H$, and $I$. [u]Round 5 [/u] [b]p13.[/b] Point $X$ is on line segment $AB$ such that $AX = \frac25$ and $XB = \frac52$. Circle $\Omega$ has diameter $AB$ and circle $\omega$ has diameter $XB$. A ray perpendicular to $AB$ begins at $X$ and intersects $\Omega$ at a point $Y$. Let $Z$ be a point on $\omega$ such that $\angle YZX = 90^o$. If the area of triangle $XYZ$ can be expressed as $\frac{a}{b}$ for positive integers $a, b$ with $gcd(a, b) = 1$, find $a + b$. [b]p14.[/b] Andrew, Ben, and Clayton are discussing four different songs; for each song, each person either likes or dislikes that song, and each person likes at least one song and dislikes at least one song. As it turns out, Andrew and Ben don't like any of the same songs, but Clayton likes at least one song that Andrew likes and at least one song that Ben likes! How many possible ways could this have happened? [b]p15.[/b] Let triangle $ABC$ with circumcircle $\Omega$ satisfy $AB = 39$, $BC = 40$, and $CA = 25$. Let $P$ be a point on arc $BC$ not containing $A$, and let $Q$ and $R$ be the reflections of $P$ in $AB$ and $AC$, respectively. Let $AQ$ and $AR$ meet $\Omega$ again at $S$ and $T$, respectively. Given that the reflection of $QR$ over $BC$ is tangent to $\Omega$ , $ST$ can be expressed as $\frac{a}{b}$ for positive integers $a, b$ with $gcd(a,b)= 1$. Find $a + b$. PS. You should use hide for answers. Rounds 1-3 have been posted [url=https://artofproblemsolving.com/community/c4h3131401p28368159]here [/url] and 6-7 [url=https://artofproblemsolving.com/community/c4h3131434p28368604]here [/url],Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1956 Moscow Mathematical Olympiad, 331

Given a closed broken line $A_1A_2A_3...A_n$ in space and a plane intersecting all its segments, $A_1A_2$ at $B_1, A_2A_3$ at $B_2$ ,$... $, $A_nA_1$ at $B_n$, prove that $$\frac{A_1B_1}{B_1A_2}\cdot \frac{A_2B_2}{B_2A_3}\cdot \frac{A_3B_3}{B_3A_4}\cdot ...\cdot \frac{A_nB_n}{B_nA_1}= 1$$.

Novosibirsk Oral Geo Oly IX, 2021.7

A circle concentric with the inscribed circle of $ABC$ intersects the sides of the triangle at six points forming a convex hexagon $A_1A_2B_1B_2C_1C_2$ (points $C_1$ and $C_2$ on the $AB$ side, $A_1$ and $A_2$ on $BC$, $B_1$ and $B_2$ on $AC$). Prove that if line $A_1B_1$ is parallel to the bisector of angle $B$, then line $A_2C_2$ is parallel to the bisector of angle $C$.

2016 Korea Summer Program Practice Test, 7

A infinite sequence $\{ a_n \}_{n \ge 0}$ of real numbers satisfy $a_n \ge n^2$. Suppose that for each $i, j \ge 0$ there exist $k, l$ with $(i,j) \neq (k,l)$, $l - k = j - i$, and $a_l - a_k = a_j - a_i$. Prove that $a_n \ge (n + 2016)^2$ for some $n$.

2012 Sharygin Geometry Olympiad, 12

Let $O$ be the circumcenter of an acute-angled triangle $ABC$. A line passing through $O$ and parallel to $BC$ meets $AB$ and $AC$ in points $P$ and $Q$ respectively. The sum of distances from $O$ to $AB$ and $AC$ is equal to $OA$. Prove that $PB + QC = PQ$.

Math Hour Olympiad, Grades 8-10, 2016

[u]Round 1[/u] [b]p1.[/b] Alice and Bob compiled a list of movies that exactly one of them saw, then Cindy and Dale did the same. To their surprise, these two lists were identical. Prove that if Alice and Cindy list all movies that exactly one of them saw, this list will be identical to the one for Bob and Dale. [b]p2.[/b] Several whole rounds of cheese were stored in a pantry. One night some rats sneaked in and consumed $10$ of the rounds, each rat eating an equal portion. Some were satisfied, but $7$ greedy rats returned the next night to finish the remaining rounds. Their portions on the second night happened to be half as large as on the first night. How many rounds of cheese were initially in the pantry? [b]p3.[/b] You have $100$ pancakes, one with a single blueberry, one with two blueberries, one with three blueberries, and so on. The pancakes are stacked in a random order. Count the number of blueberries in the top pancake, and call that number N. Pick up the stack of the top N pancakes, and flip it upside down. Prove that if you repeat this counting-and-flipping process, the pancake with one blueberry will eventually end up at the top of the stack. [b]p4.[/b] There are two lemonade stands along the $4$-mile-long circular road that surrounds Sour Lake. $100$ children live in houses along the road. Every day, each child buys a glass of lemonade from the stand that is closest to her house, as long as she does not have to walk more than one mile along the road to get there. A stand's [u]advantage [/u] is the difference between the number of glasses it sells and the number of glasses its competitor sells. The stands are positioned such that neither stand can increase its advantage by moving to a new location, if the other stand stays still. What is the maximum number of kids who can't buy lemonade (because both stands are too far away)? [b]p5.[/b] Merlin uses several spells to move around his $64$-room castle. When Merlin casts a spell in a room, he ends up in a different room of the castle. Where he ends up only depends on the room where he cast the spell and which spell he cast. The castle has the following magic property: if a sequence of spells brings Merlin from some room $A$ back to room $A$, then from any other room $B$ in the castle, that same sequence brings Merlin back to room $B$. Prove that there are two different rooms $X$ and $Y$ and a sequence of spells that both takes Merlin from $X$ to $Y$ and from $Y$ to $X$. [u]Round 2[/u] [b]p6.[/b] Captains Hook, Line, and Sinker are deciding where to hide their treasure. It is currently buried at the $X$ in the map below, near the lairs of the three pirates. Each pirate would prefer that the treasure be located as close to his own lair as possible. You are allowed to propose a new location for the treasure to the pirates. If at least two out of the three pirates prefer the new location (because it moves closer to their own lairs), then the treasure will be moved there. Assuming the pirates’ lairs form an acute triangle, is it always possible to propose a sequence of new locations so that the treasure eventually ends up in your backyard (wherever that is)? [img]https://cdn.artofproblemsolving.com/attachments/c/c/a9e65624d97dec612ef06f8b30be5540cfc362.png[/img] [b]p7.[/b] Homer went on a Donut Diet for the month of May ($31$ days). He ate at least one donut every day of the month. However, over any stretch of $7$ consecutive days, he did not eat more than $13$ donuts. Prove that there was some stretch of consecutive days over which Homer ate exactly $30$ donuts. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1997 May Olympiad, 2

Tags: geometry
In a square $ABCD$ with side $k$, let $P$ and $Q$ in $BC$ and $DC$ respectively, where $PC = 3PB$ and $QD = 2QC$. Let $M$ be the point of intersection of the lines $AQ$ and $PD$, determine the area of $QMD$ in function of $k$

1999 Junior Balkan Team Selection Tests - Romania, 2

Tags: geometry
Consider, on a plane, the triangle $ ABC, $ vectors $ \vec x,\vec y,\vec z, $ real variable $ \lambda >0 $ and $ M,N,P $ such that $$ \left\{\begin{matrix} \overrightarrow{AM}=\lambda\cdot\vec x\\\overrightarrow{AN}=\lambda\cdot\vec y \\\overrightarrow{AP}=\lambda\cdot\vec z \end{matrix}\right. . $$ Find the locus of the center of mass of $ MNP. $ [i]Dan Brânzei and Gheorghe Iurea[/i]

Indonesia MO Shortlist - geometry, g2

It is known that two circles have centers at $P$ and $Q$. Prove that the intersection points of the two internal common tangents of the two circles with their two external common tangents lie on the same circle.

2004 India IMO Training Camp, 3

The game of $pebbles$ is played on an infinite board of lattice points $(i,j)$. Initially there is a $pebble$ at $(0,0)$. A move consists of removing a $pebble$ from point $(i,j)$and placing a $pebble$ at each of the points $(i+1,j)$ and $(i,j+1)$ provided both are vacant. Show taht at any stage of the game there is a $pebble$ at some lattice point $(a,b)$ with $0 \leq a+b \leq 3$

2024 Iranian Geometry Olympiad, 5

Tags: geometry
Cyclic quadrilateral $ABCD$ with circumcircle $\omega$ is given. Let $E$ be a fixed point on segment $AC$. $M$ is an arbitrary point on $\omega$, lines $AM$ and $BD$ meet at a point $P$. $EP$ meets $AB$ and $AD$ at points $R$ and $Q$, respectively, $S$ is the intersection of $BQ,DR$ and lines $MS$ and $AC$ meet at a point $T$. Prove that as $M$ varies the circumcircle of triangle $\bigtriangleup CMT$ passes through a fixed point other than $C$. [i]Proposed by Chunlai Jin - China[/i]

2005 National Olympiad First Round, 21

What is the radius of the circle passing through the center of the square $ABCD$ with side length $1$, its corner $A$, and midpoint of its side $[BC]$? $ \textbf{(A)}\ \dfrac {\sqrt 3}4 \qquad\textbf{(B)}\ \dfrac {\sqrt 5}4 \qquad\textbf{(C)}\ \sqrt 2 \qquad\textbf{(D)}\ \sqrt 3 \qquad\textbf{(E)}\ \dfrac {\sqrt {10}}4 $

2003 Croatia National Olympiad, Problem 1

Tags: geometry , incenter
Let $I$ be a point on the bisector of angle $BAC$ of a triangle $ABC$. Points $M,N$ are taken on the respective sides $AB$ and $AC$ so that $\angle ABI=\angle NIC$ and $\angle ACI=\angle MIB$. Show that $I$ is the incenter of triangle $ABC$ if and only if points $M,N$ and $I$ are collinear.

2018 Iran Team Selection Test, 5

Tags: geometry
Let $\omega$ be the circumcircle of isosceles triangle $ABC$ ($AB=AC$). Points $P$ and $Q$ lie on $\omega$ and $BC$ respectively such that $AP=AQ$ .$AP$ and $BC$ intersect at $R$. Prove that the tangents from $B$ and $C$ to the incircle of $\triangle AQR$ (different from $BC$) are concurrent on $\omega$. [i]Proposed by Ali Zamani, Hooman Fattahi[/i]