This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

V Soros Olympiad 1998 - 99 (Russia), grade8

[b]p1.[/b] Given two irreducible fractions. The denominator of the first fraction is $4$, the denominator of the second fraction is $6$. What can the denominator of the product of these fractions be equal to if the product is represented as an irreducible fraction? [b]p2.[/b] Three horses compete in the race. The player can bet a certain amount of money on each horse. Bets on the first horse are accepted in the ratio $1: 4$. This means that if the first horse wins, then the player gets back the money bet on this horse, and four more times the same amount. Bets on the second horse are accepted in the ratio $1:3$, on the third -$ 1:1$. Money bet on a losing horse is not returned. Is it possible to bet in such a way as to win whatever the outcome of the race? [b]p3.[/b] A quadrilateral is inscribed in a circle, such that the center of the circle, point $O$, is lies inside it. Let $K$, $L$, $M$, $N$ be the midpoints of the sides of the quadrilateral, following in this order. Prove that the bisectors of angles $\angle KOM$ and $\angle LOC$ are perpendicular (Fig.). [img]https://cdn.artofproblemsolving.com/attachments/b/8/ea4380698eba7f4cc2639ce20e3057e0294a7c.png[/img] [b]p4.[/b] Prove that the number$$\underbrace{33...33}_{1999 \,\,\,3s}1$$ is not divisible by $7$. [b]p5.[/b] In triangle $ABC$, the median drawn from vertex $A$ to side $BC$ is four times smaller than side $AB$ and forms an angle of $60^o$ with it. Find the greatest angle of this triangle. [b]p6.[/b] Given a $7\times 8$ rectangle made up of 1x1 cells. Cut it into figures consisting of $1\times 1$ cells, so that each figure consists of no more than $5$ cells and the total length of the cuts is minimal (give an example and prove that this cannot be done with a smaller total length of the cuts). You can only cut along the boundaries of the cells. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]

DMM Devil Rounds, 2003

[b]p1.[/b] Find the smallest positive integer which is $1$ more than multiple of $3$, $2$ more than a multiple of $4$, and $4$ more than a multiple of $7$. [b]p2.[/b] Let $p = 4$, and let $a =\sqrt1$, $b =\sqrt2$, $c =\sqrt3$, $...$. Compute the value of $(p-a)(p-b) ... (p-z)$. [b]p3.[/b] There are $6$ points on the circumference of a circle. How many convex polygons are there having vertices on these points? [b]p4.[/b] David and I each have a sheet of computer paper, mine evenly spaced by $19$ parallel lines into $20$ sections, and his evenly spaced by $29$ parallel lines into $30$ sections. If our two sheets are overlayed, how many pairs of lines are perfectly incident? [b]p5.[/b] A pyramid is created by stacking equilateral triangles of balls, each layer having one fewer ball per side than the triangle immediately beneath it. How many balls are used if the pyramid’s base has $5$ balls to a side? [b]p6.[/b] Call a positive integer $n$ good if it has $3$ digits which add to $4$ and if it can be written in the form $n = k^2$, where $k$ is also a positive integer. Compute the average of all good numbers. [b]p7.[/b] John’s birthday cake is a scrumptious cylinder of radius $6$ inches and height $3$ inches. If his friends cut the cake into $8$ equal sectors, what is the total surface area of a piece of birthday cake? [b]p8.[/b] Evaluate $\sum^{10}_{i=1}\sum^{10}_{j=1} ij$. [b]p9.[/b] If three numbers $a$, $b$, and $c$ are randomly selected from the interval $[-2, 2]$, what is the probability that $a^2 + b^2 + c^2 \ge 4$? [b]p10.[/b] Evaluate $\sum^{\infty}_{x=2} \frac{2}{x^2 - 1}.$ [b]p11.[/b] Consider $4x^2 - kx - 1 = 0$. If the roots of this polynomial are $\sin \theta$ and $\cos \theta$, compute $|k|$. [b]p12.[/b] Given that $65537 = 2^{16} + 1$ is a prime number, compute the number of primes of the form $2^n + 1$ (for $n \ge 0$) between $1$ and $10^6$. [b]p13.[/b] Compute $\sin^{-1}(36/85) + \cos^{-1}(4/5) + \cos^{-1}(15/17).$ [b]p14.[/b] Find the number of integers $n$, $1\le n \le 2003$, such that $n^{2003} - 1$ is a multiple of $10$. [b]p15.[/b] Find the number of integers $n,$ $1 \le n \le 120$, such that $n^2$ leaves remainder $1$ when divided by $120$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

Novosibirsk Oral Geo Oly VII, 2020.3

Cut an arbitrary triangle into $2019$ pieces so that one of them turns out to be a triangle, one is a quadrilateral, ... one is a $2019$-gon and one is a $2020$-gon. Polygons do not have to be convex.

2014 Peru IMO TST, 6

Tags: geometry
Let $ABC$ be a triangle where $AB > BC$, and $D$ and $E$ be points on sides $AB$ and $AC$ respectively, such that $DE$ and $AC$ are parallel. Consider the circumscribed circumference of triangle $ABC$. A circumference that passes through points $D$ and $E$ is tangent to the arc $AC$ that does not contain $B$ at point $P$. Let $Q$ be the reflection of point $P$ with respect to the perpendicular bisector of $AC$. The segments $BQ$ and $DE$ intersect at $X$. Prove that $AX = XC$.

KoMaL A Problems 2023/2024, A. 871

Let $ABC$ be an obtuse triangle, and let $H$ denote its orthocenter. Let $\omega_A$ denote the circle with center $A$ and radius $AH$. Let $\omega_B$ and $\omega_C$ be defined in a similar way. For all points $X$ in the plane of triangle $ABC$ let circle $\Omega(X)$ be defined in the following way (if possible): take the polars of point $X$ with respect to circles $\omega_A$, $\omega_B$ and $\omega_C$, and let $\Omega(X)$ be the circumcircle of the triangle defined by these three lines. With a possible exception of finitely many points find the locus of points $X$ for which point $X$ lies on circle $\Omega(X)$. [i]Proposed by Vilmos Molnár-Szabó, Budapest[/i]

2024 BAMO, B

Tags: geometry
Amelia’s mother proposes a game. “Pick two of the shapes below,” she says to Amelia. (The shapes are an equilateral triangle, a parallelogram, an isosceles trapezoid, a kite, and an ellipse. These shapes are drawn to scale.) Amelia’s mother continues: “I will draw those two shapes on a sheet of paper, in whatever position and orientation I choose, without overlapping them. Then you draw a straight line that cuts both shapes, so that each shape is divided into two congruent halves.” [img]https://cdn.artofproblemsolving.com/attachments/e/7/c3dfe1e528d7be431b8afcc187b65b0c8f04fd.png[/img] Which two of the shapes should Amelia choose to guarantee that she can succeed? Given that choice of shapes, explain how Amelia can draw her line, what property of those shapes makes it possible for her to do so, and why this would not work with any other pair of these shapes.

2020 Abels Math Contest (Norwegian MO) Final, 4a

Tags: midpoint , geometry
The midpoint of the side $AB$ in the triangle $ABC$ is called $C'$. A point on the side $BC$ is called $D$, and $E$ is the point of intersection of $AD$ and $CC'$. Assume that $AE/ED = 2$. Show that $D$ is the midpoint of $BC$.

2024 Al-Khwarizmi IJMO, 7

Tags: geometry
Two circles with centers $O_{1}$ and $O_{2}$ intersect at $P$ and $Q$. Let $\omega$ be the circumcircle of the triangle $P O_{1} O_{2}$; the circle $\omega$ intersect the circles centered at $O_{1}$ and $O_{2}$ at points $A$ and $B$, respectively. The point $Q$ is inside triangle $P A B$ and $P Q$ intersects $\omega$ at $M$. The point $E$ on $\omega$ is such that $P Q=Q E$. Let $M E$ and $A B$ meet at $L$, prove that $\angle Q L A=\angle M L A$. [i]Proposed by Amir Parsa Hoseini Nayeri, Iran[/i]

2023 Romania National Olympiad, 3

We consider triangle $ABC$ with $\angle BAC = 90^{\circ}$ and $\angle ABC = 60^{\circ}.$ Let $ D \in (AC) , E \in (AB),$ such that $CD = 2 \cdot DA$ and $DE $ is bisector of $\angle ADB.$ Denote by $M$ the intersection of $CE$ and $BD$, and by $P$ the intersection of $DE$ and $AM$. a) Show that $AM \perp BD$. b) Show that $3 \cdot PB = 2 \cdot CM$.

2006 Sharygin Geometry Olympiad, 10.6

A quadrangle was drawn on the board, that you can inscribe and circumscribe a circle. Marked are the centers of these circles and the intersection point of the lines connecting the midpoints of the opposite sides, after which the quadrangle itself was erased. Restore it with a compass and ruler.

2006 May Olympiad, 4

Tags: trapezoid , area , geometry
Let $ABCD$ be a trapezoid of bases $AB$ and $CD$ . Let $O$ be the intersection point of the diagonals $AC$ and $BD$. If the area of the triangle $ABC$ is $150$ and the area of the triangle $ACD$ is $120$, calculate the area of the triangle $BCO$.

2016 USAMTS Problems, 5:

Let $ABCD$ be a convex quadrilateral with perimeter $\tfrac{5}{2}$ and $AC=BD=1$. Determine the maximum possible area of $ABCD$.

Cono Sur Shortlist - geometry, 2005.G6

Let $AM$ and $AN$ be the tangents to a circle $\Gamma$ drawn from a point $A$ ($M$ and $N$ lie on the circle). A line passing through $A$ cuts $\Gamma$ at $B$ and $C$, with B between $A$ and $C$ such that $AB: BC = 2: 3$. If $P$ is the intersection point of $AB$ and $MN$, calculate the ratio $AP: CP$ .

2012 Harvard-MIT Mathematics Tournament, 9

Tags: geometry
Let $O $, $O_1$, $O_2 $, $O_3$, $O_4$ be points such that $O_1$, $O$, $O_3$ and $O_2$, $O$, $O_4$ are collinear in that order, $OO_1 =1$, $OO_2 = 2$, $OO_3 =\sqrt2$, $OO_4 = 2$, and $\angle O_1OO_2 = 45^o$. Let $\omega_1$, $\omega_2$, $\omega_3$, $\omega_4$ be the circles with respective centers $O_1$, $O_2$ , $O_3$, $O_4$ that go through $O$. Let $A$ be the intersection of $\omega_1$ and $\omega_2$, $B$ be the intersection of $\omega_2$ and $\omega_3$, $C$ be the intersection of $\omega_3$ and $\omega_4$, and $D$ be the intersection of $\omega_4$ and $\omega_1$ with $A$, $B$, $C$, $D$ all distinct from $O$. What is the largest possible area of a convex quadrilateral $P_1P_2P_3P_4$ such that $P_i$ lies on $O_i$ and that $A$, $B$, $C$, $D$ all lie on its perimeter?

1989 IMO Shortlist, 18

Given a convex polygon $ A_1A_2 \ldots A_n$ with area $ S$ and a point $ M$ in the same plane, determine the area of polygon $ M_1M_2 \ldots M_n,$ where $ M_i$ is the image of $ M$ under rotation $ R^{\alpha}_{A_i}$ around $ A_i$ by $ \alpha_i, i \equal{} 1, 2, \ldots, n.$

2019 BMT Spring, Tie 3

Tags: geometry
We say that a quadrilateral $Q$ is [i]tangential [/i] if a circle can be inscribed into it, i.e. there exists a circle $C$ that does not meet the vertices of $Q$, such that it meets each edge at exactly one point. Let $N$ be the number of ways to choose four distinct integers out of $\{1, . . . , 24\}$ so that they form the side lengths of a tangential quadrilateral. Find the largest prime factor of $N$.

2022 Macedonian Mathematical Olympiad, Problem 2

Let $ABCD$ be cyclic quadrilateral and $E$ the midpoint of $AC$. The circumcircle of $\triangle CDE$ intersect the side $BC$ at $F$, which is different from $C$. If $B'$ is the reflection of $B$ across $F$, prove that $EF$ is tangent to the circumcircle of $\triangle B'DF$. [i]Proposed by Nikola Velov[/i]

1969 IMO Longlists, 26

$(GBR 3)$ A smooth solid consists of a right circular cylinder of height $h$ and base-radius $r$, surmounted by a hemisphere of radius $r$ and center $O.$ The solid stands on a horizontal table. One end of a string is attached to a point on the base. The string is stretched (initially being kept in the vertical plane) over the highest point of the solid and held down at the point $P$ on the hemisphere such that $OP$ makes an angle $\alpha$ with the horizontal. Show that if $\alpha$ is small enough, the string will slacken if slightly displaced and no longer remain in a vertical plane. If then pulled tight through $P$, show that it will cross the common circular section of the hemisphere and cylinder at a point $Q$ such that $\angle SOQ = \phi$, $S$ being where it initially crossed this section, and $\sin \phi = \frac{r \tan \alpha}{h}$.

2017 Denmark MO - Mohr Contest, 3

Tags: arc , geometry , area
The figure shows an arc $\ell$ on the unit circle and two regions $A$ and $B$. Prove that the area of $A$ plus the area of $B$ equals the length of $\ell$. [img]https://1.bp.blogspot.com/-SYoSrFowZ30/XzRz0ygiOVI/AAAAAAAAMUs/0FCduUoxKGwq0gSR-b3dtb3SvDjZ89x_ACLcBGAsYHQ/s0/2017%2BMohr%2Bp3.png[/img]

2016 Bosnia And Herzegovina - Regional Olympiad, 2

Does there exist a right angled triangle, which hypotenuse is $2016^{2017}$ and two other sides positive integers.

2009 Sharygin Geometry Olympiad, 7

Let $s$ be the circumcircle of triangle $ABC, L$ and $W$ be common points of angle's $A$ bisector with side $BC$ and $s$ respectively, $O$ be the circumcenter of triangle $ACL$. Restore triangle $ABC$, if circle $s$ and points $W$ and $O$ are given. (D.Prokopenko)

2006 Princeton University Math Competition, 1

Tags: geometry
$A,B,C,D,E$, and $F$ are points of a convex hexagon, and there is a circle such that $A,B,C,D,E$, and $F$ are all on the circle. If $\angle ABC = 72^o$, $\angle BCD = 96^o$, $\angle CDE = 118^o$, and $\angle DEF = 104^o$, what is $\angle EFA$?

2014 Vietnam Team Selection Test, 4

a. Let $ABC$ be a triangle with altitude $AD$ and $P$ a variable point on $AD$. Lines $PB$ and $AC$ intersect each other at $E$, lines $PC$ and $AB$ intersect each other at $F.$ Suppose $AEDF$ is a quadrilateral inscribed . Prove that \[\frac{PA}{PD}=(\tan B+\tan C)\cot \frac{A}{2}.\] b. Let $ABC$ be a triangle with orthocentre $H$ and $P$ a variable point on $AH$. The line through $C$ perpendicular to $AC$ meets $BP$ at $M$, The line through $B$ perpendicular to $AB$ meets $CP$ at $N.$ $K$ is the projection of $A$on $MN$. Prove that $\angle BKC+\angle MAN$ is invariant .

2004 Junior Balkan Team Selection Tests - Romania, 2

Let $M,N, P$ be the midpoints of the sides $BC,CA,AB$ of the triangle $ABC$, respectively, and let $G$ be the centroid of the triangle. Prove that if $BMGP$ is cyclic and $2BN = \sqrt3 AB$ , then triangle $ABC$ is equilateral.

2019 ABMC, 2019 Nov

[b]p1.[/b] The remainder of a number when divided by $7$ is $5$. If I multiply the number by $32$ and add $18$ to the product, what is the new remainder when divided by $7$? [b]p2.[/b] If a fair coin is flipped $15$ times, what is the probability that there are more heads than tails? [b]p3.[/b] Let $-\frac{\sqrt{p}}{q}$ be the smallest nonzero real number such that the reciprocal of the number is equal to the number minus the square root of the square of the number, where $p$ and $q$ are positive integers and $p$ is not divisible the square of any prime. Find $p + q$. [b]p4.[/b] Rachel likes to put fertilizers on her grass to help her grass grow. However, she has cows there as well, and they eat $3$ little fertilizer balls on average. If each ball is spherical with a radius of $4$, then the total volume that each cow consumes can be expressed in the form $a\pi$ where $a$ is an integer. What is $a$? [b]p5.[/b] One day, all $30$ students in Precalc class are bored, so they decide to play a game. Everyone enters into their calculators the expression $9 \diamondsuit 9 \diamondsuit 9 ... \diamondsuit 9$, where $9$ appears $2020$ times, and each $\diamondsuit$ is either a multiplication or division sign. Each student chooses the signs randomly, but they each choose one more multiplication sign than division sign. Then all $30$ students calculate their expression and take the class average. Find the expected value of the class average. [b]p6.[/b] NaNoWriMo, or National Novel Writing Month, is an event in November during which aspiring writers attempt to produce novel-length work - formally defined as $50,000$ words or more - within the span of $30$ days. Justin wants to participate in NaNoWriMo, but he's a busy high school student: after accounting for school, meals, showering, and other necessities, Justin only has six hours to do his homework and perhaps participate in NaNoWriMo on weekdays. On weekends, he has twelve hours on Saturday and only nine hours on Sunday, because he goes to church. Suppose Justin spends two hours on homework every single day, including the weekends. On Wednesdays, he has science team, which takes up another hour and a half of his time. On Fridays, he spends three hours in orchestra rehearsal. Assume that he spends all other time on writing. Then, if November $1$st is a Friday, let $w$ be the minimum number of words per minute that Justin must type to finish the novel. Round $w$ to the nearest whole number. [b]p7.[/b] Let positive reals $a$, $b$, $c$ be the side lengths of a triangle with area $2030$. Given $ab + bc + ca = 15000$ and $abc = 350000$, find the sum of the lengths of the altitudes of the triangle. [b]p8.[/b] Find the minimum possible area of a rectangle with integer sides such that a triangle with side lengths $3$, $4$, $5$, a triangle with side lengths $4$, $5$, $6$, and a triangle with side lengths $\frac94$, $4$, $4$ all fit inside the rectangle without overlapping. [b]p9.[/b] The base $16$ number $10111213...99_{16}$, which is a concatenation of all of the (base $10$) $2$-digit numbers, is written on the board. Then, the last $2n$ digits are erased such that the base $10$ value of remaining number is divisible by $51$. Find the smallest possible integer value of $n$. [b]p10.[/b] Consider sequences that consist entirely of $X$'s, $Y$ 's and $Z$'s where runs of consecutive $X$'s, $Y$ 's, and $Z$'s are at most length $3$. How many sequences with these properties of length $8$ are there? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].