This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

Russian TST 2018, P2

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

2016 CentroAmerican, 2

Let $ABC$ be an acute-angled triangle, $\Gamma$ its circumcircle and $M$ the midpoint of $BC$. Let $N$ be a point in the arc $BC$ of $\Gamma$ not containing $A$ such that $\angle NAC= \angle BAM$. Let $R$ be the midpoint of $AM$, $S$ the midpoint of $AN$ and $T$ the foot of the altitude through $A$. Prove that $R$, $S$ and $T$ are collinear.

2011 District Olympiad, 2

[b]a)[/b] Show that if four distinct complex numbers have the same absolute value and their sum vanishes, then they represent a rectangle. [b]b)[/b] Let $ x,y,z,t $ be four real numbers, and $ k $ be an integer. Prove the following implication: $$ \sum_{j\in\{ x,y,z,t\}} \sin j = 0 = \sum_{j\in\{ x,y,z,t\}} \cos j\implies \sum_{j\in\{ x,y,z,t\}} \sin (1+2n)j. $$

2014 Contests, 3

Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.

2017 JBMO Shortlist, G2

Let $ABC$ be an acute triangle such that $AB$ is the shortest side of the triangle. Let $D$ be the midpoint of the side $AB$ and $P$ be an interior point of the triangle such that $\angle CAP = \angle CBP = \angle ACB$. Denote by M and $N$ the feet of the perpendiculars from $P$ to $BC$ and $AC$, respectively. Let $p$ be the line through $ M$ parallel to $AC$ and $q$ be the line through $N$ parallel to $BC$. If $p$ and $q$ intersect at $K$ prove that $D$ is the circumcenter of triangle $MNK$.

2024 Czech-Polish-Slovak Junior Match, 1

Let $G$ be the barycenter of triangle $ABC$. Let $D$ be a point such that $AGDB$ is a parallelogram. Show that $BG \parallel CD$.

1995 Greece National Olympiad, 2

Let $ABC$ be a triangle with $AB = AC$ and let $D$ be a point on $BC$ such that the incircle of $ABD$ and the excircle of $ADC$ corresponding to $A$ have the same radius. Prove that this radius is equal to one quarter of the altitude from $B$ of triangle $ABC$.

Swiss NMO - geometry, 2011.8

Let $ABCD$ be a parallelogram and $H$ the Orthocentre of $\triangle{ABC}$. The line parallel to $AB$ through $H$ intersects $BC$ at $P$ and $AD$ at $Q$ while the line parallel to $BC$ through $H$ intersects $AB$ at $R$ and $CD$ at $S$. Show that $P$, $Q$, $R$ and $S$ are concyclic. [i](Swiss Mathematical Olympiad 2011, Final round, problem 8)[/i]

2022 MMATHS, 1

Tags: geometry
Rectangle $ABCD$ has $AB = 8$ and $BC = 13$. Points $P_1$ and $P_2$ lie on $AB$ and $CD$ with $P_1P_2 \parallel BC$. Points $Q_1$ and $Q_2$ lie on $BC$ and $DA$ with $Q_1Q_2 \parallel AB$. Find the area of quadrilateral $P_1Q_1P_2Q_2$.

2005 Mid-Michigan MO, 7-9

[b]p1.[/b] Prove that no matter what digits are placed in the four empty boxes, the eight-digit number $9999\Box\Box\Box\Box$ is not a perfect square. [b]p2.[/b] Prove that the number $m/3+m^2/2+m^3/6$ is integral for all integral values of $m$. [b]p3.[/b] An elevator in a $100$ store building has only two buttons: UP and DOWN. The UP button makes the elevator go $13$ floors up, and the DOWN button makes it go $8$ floors down. Is it possible to go from the $13$th floor to the $8$th floor? [b]p4.[/b] Cut the triangle shown in the picture into three pieces and rearrange them into a rectangle. (Pieces can not overlap.) [img]https://cdn.artofproblemsolving.com/attachments/4/b/ca707bf274ed54c1b22c4f65d3d0b0a5cfdc56.png[/img] [b]p5.[/b] Two players Tom and Sid play the following game. There are two piles of rocks, $7$ rocks in the first pile and $9$ rocks in the second pile. Each of the players in his turn can take either any amount of rocks from one pile or the same amount of rocks from both piles. The winner is the player who takes the last rock. Who does win in this game if Tom starts the game? [b]p6.[/b] In the next long multiplication example each letter encodes its own digit. Find these digits. $\begin{tabular}{ccccc} & & & a & b \\ * & & & c & d \\ \hline & & c & e & f \\ + & & a & b & \\ \hline & c & f & d & f \\ \end{tabular}$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 Czech And Slovak Olympiad III A, 5

In the triangle $ABC$, $| BC | = 1$ and there is exactly one point $D$ on the side $BC$ such that $|DA|^2 = |DB| \cdot |DC|$. Determine all possible values of the perimeter of the triangle $ABC$.

1990 Mexico National Olympiad, 6

$ABC$ is a triangle with $\angle C = 90^o$. $E$ is a point on $AC$, and $F$ is the midpoint of $EC$. $CH$ is an altitude. $I$ is the circumcenter of $AHE$, and $G$ is the midpoint of $BC$. Show that $ABC$ and $IGF$ are similar.

2024 Iranian Geometry Olympiad, 1

Tags: geometry
In the figure below points $A,B$ are the centers of the circles $\omega_1, \omega_2$. Starting from the line $BC$ points $E,F,G,H,I$ are obtained respectively. Find the angle $\angle IBE$.

1983 AMC 12/AHSME, 27

A large sphere is on a horizontal field on a sunny day. At a certain time the shadow of the sphere reaches out a distance of $10$ m from the point where the sphere touches the ground. At the same instant a meter stick (held vertically with one end on the ground) casts a shadow of length $2$ m. What is the radius of the sphere in meters? (Assume the sun's rays are parallel and the meter stick is a line segment.) $ \textbf{(A)}\ \frac{5}{2}\qquad\textbf{(B)}\ 9 - 4\sqrt{5}\qquad\textbf{(C)}\ 8\sqrt{10} - 23\qquad\textbf{(D)}\ 6 - \sqrt{15}\qquad\textbf{(E)}\ 10\sqrt{5} - 20 $

2018 Iran Team Selection Test, 6

Tags: geometry
Consider quadrilateral $ABCD $ inscribed in circle $\omega $. $P\equiv AC\cap BD$. $E$, $F$ lie on sides $AB$, $CD$ respectively such that $\hat {APE}=\hat {DPF} $. Circles $\omega_1$, $\omega_2$ are tangent to $\omega$ at $X $, $Y $ respectively and also both tangent to the circumcircle of $\triangle PEF $ at $P $. Prove that: $$\frac {EX}{EY}=\frac {FX}{FY} $$ [i]Proposed by Ali Zamani [/i]

2024 Lusophon Mathematical Olympiad, 3

Let $ABC$ be a triangle with incentre $I$. A line $r$ that passes through $I$ intersects the circumcircles of triangles $AIB$ and $AIC$ at points $P$ and $Q$, respectively. Prove that the circumcentre of triangle $APQ$ is on the circumcircle of $ABC$.

2022-2023 OMMC FINAL ROUND, 4

Tags: geometry
In $\triangle ABC$ points $D$, $E$ lie on segment $BC$ where $BD = DE = EC.$ Points $X$, $Y$ lie on the perpendicular bisectors of $AD$, $AE$ respectively. If $XE$, $YD$ are tangent to the circumcircles of $\triangle AEC$, $\triangle ADB$ respectively, prove $X,A,Y$ are collinear.

Ukrainian TYM Qualifying - geometry, 2015.21

Let $CH$ be the altitude of the triangle $ABC$ drawn on the board, in which $\angle C = 90^o$, $CA \ne CB$. The mathematics teacher drew the perpendicular bisectors of segments$ CA$ and $CB$, which cut the line CH at points $K$ and $M$, respectively, and then erased the drawing, leaving only the points $C, K$ and $M$ on the board. Restore triangle $ABC$, using only a compass and a ruler.

May Olympiad L1 - geometry, 2016.4

Tags: midpoint , geometry
In a triangle $ABC$, let $D$ and $E$ point in the sides $BC$ and $AC$ respectively. The segments $AD$ and $BE$ intersects in $O$, let $r$ be line (parallel to $AB$) such that $r$ intersects $DE$ in your midpoint, show that the triangle $ABO$ and the quadrilateral $ODCE$ have the same area.

2010 Contests, 1a

The point $P$ lies on the edge $AB$ of a quadrilateral $ABCD$. The angles $BAD, ABC$ and $CPD$ are right, and $AB = BC + AD$. Show that $BC = BP$ or $AD = BP$.

2019 AMC 12/AHSME, 10

Tags: geometry
The figure below shows $13$ circles of radius $1$ within a larger circle. All the intersections occur at points of tangency. What is the area of the region, shaded in the figure, inside the larger circle but outside all the circles of radius $1 ?$ [asy]unitsize(20);filldraw(circle((0,0),2*sqrt(3)+1),rgb(0.5,0.5,0.5));filldraw(circle((-2,0),1),white);filldraw(circle((0,0),1),white);filldraw(circle((2,0),1),white);filldraw(circle((1,sqrt(3)),1),white);filldraw(circle((3,sqrt(3)),1),white);filldraw(circle((-1,sqrt(3)),1),white);filldraw(circle((-3,sqrt(3)),1),white);filldraw(circle((1,-1*sqrt(3)),1),white);filldraw(circle((3,-1*sqrt(3)),1),white);filldraw(circle((-1,-1*sqrt(3)),1),white);filldraw(circle((-3,-1*sqrt(3)),1),white);filldraw(circle((0,2*sqrt(3)),1),white);filldraw(circle((0,-2*sqrt(3)),1),white);[/asy] $\textbf{(A) } 4 \pi \sqrt{3} \qquad\textbf{(B) } 7 \pi \qquad\textbf{(C) } \pi(3\sqrt{3} +2) \qquad\textbf{(D) } 10 \pi (\sqrt{3} - 1) \qquad\textbf{(E) } \pi(\sqrt{3} + 6)$

2020 Novosibirsk Oral Olympiad in Geometry, 3

Cut an arbitrary triangle into $2019$ pieces so that one of them turns out to be a triangle, one is a quadrilateral, ... one is a $2019$-gon and one is a $2020$-gon. Polygons do not have to be convex.

May Olympiad L2 - geometry, 2003.5

An ant, which is on an edge of a cube of side $8$, must travel on the surface and return to the starting point. It's path must contain interior points of the six faces of the cube and should visit only once each face of the cube. Find the length of the path that the ant can carry out and justify why it is the shortest path.

2017 AMC 10, 22

Tags: geometry
Sides $\overline{AB}$ and $\overline{AC}$ of equilateral triangle $ABC$ are tangent to a circle at points $B$ and $C$ respectively. What fraction of the area of $\triangle ABC$ lies outside the circle? $ \textbf{(A) }\dfrac{4\sqrt{3}\pi}{27}-\frac{1}{3}\qquad \textbf{(B) } \frac{\sqrt{3}}{2}-\frac{\pi}{8}\qquad \textbf{(C) } \frac{1}{2} \qquad \textbf{(D) }\sqrt{3}-\frac{2\sqrt{3}\pi}{9}\qquad \textbf{(E) } \frac{4}{3}-\dfrac{4\sqrt{3}\pi}{27}$

2016 Sharygin Geometry Olympiad, P6

Let $M$ be the midpoint of side $AC$ of triangle $ABC$, $MD$ and $ME$ be the perpendiculars from $M$ to $AB$ and $BC$ respectively. Prove that the distance between the circumcenters of triangles $ABE$ and $BCD$ is equal to $AC/4$ [i](Proposed by M.Volchkevich)[/i]