This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1993 National High School Mathematics League, 1

Tags: geometry
In convex quadrilateral $ABCD$, only $D$ is an obtuse angle. Use some line segments to divide it into $n$ obtuse triangles. But on its sides (except $A,B,C,D$ ), there is no vertex of triangles we divided into. Prove that if and only if $n\geq4$, we can divide the convex quadrilateral into such $n$ triangles.

2008 Switzerland - Final Round, 8

Let $ABCDEF$ be a convex hexagon inscribed in a circle . Prove that the diagonals $AD, BE$ and $CF$ intersect at one point if and only if $$\frac{AB}{BC} \cdot \frac{CD}{DE}\cdot \frac{EF}{FA}=1$$

2011 JHMT, 7

Tags: geometry
Let $ABCD$ be a cyclic quadrilateral with $AB = 6$, $BC = 12$, $CD = 3$, and $DA = 6$. Let $E, F$ be the intersection of lines $AB$ and $CD$, lines $AD$ and $BC$, respectively. Find $EF$.

2006 AMC 10, 17

In rectangle $ ADEH$, points $ B$ and $ C$ trisect $ \overline{AD}$, and points $ G$ and $ F$ trisect $ \overline{HE}$. In addition, $ AH \equal{} AC \equal{} 2.$ What is the area of quadrilateral $ WXYZ$ shown in the figure? [asy]defaultpen(linewidth(0.7));pointpen=black; pathpen=black; size(7cm); pair A,B,C,D,E,F,G,H,W,X,Y,Z; A=(0,2); B=(1,2); C=(2,2); D=(3,2); H=(0,0); G=(1,0); F=(2,0); E=(3,0); D('A',A, N); D('B',B,N); D('C',C,N); D('D',D,N); D('E',E,NE); D('F',F,NE); D('G',G,NW); D('H',H,NW); D(A--F); D(B--E); D(D--G); D(C--H); Z=IP(A--F, C--H); Y=IP(A--F, D--G); X=IP(B--E,D--G); W=IP(B--E,C--H); D('W',W,N); D('X',X,plain.E); D('Y',Y,S); D('Z',Z,plain.W); D(A--D--E--H--cycle);[/asy] $ \textbf{(A) } \frac 12 \qquad \textbf{(B) } \frac {\sqrt {2}}2\qquad \textbf{(C) } \frac {\sqrt {3}}2 \qquad \textbf{(D) } \frac {2\sqrt {2}}3 \qquad \textbf{(E) } \frac {2\sqrt {3}}3$

1968 Poland - Second Round, 4

Prove that if the numbers $ a, b, c $, are the lengths of the sides of a triangle and the sum of the numbers $x,y,z$ is zero, then $$a^2yz + b^2zx + c^2xy \leq 0.$$

2017 Math Hour Olympiad, 6-7

[u]Round 1[/u] [b]p1.[/b] Ten children arrive at a birthday party and leave their shoes by the door. All the children have different shoe sizes. Later, as they leave one at a time, each child randomly grabs a pair of shoes their size or larger. After some kids have left, all of the remaining shoes are too small for any of the remaining children. What is the greatest number of shoes that might remain by the door? [b]p2.[/b] Turans, the king of Saturn, invented a new language for his people. The alphabet has only $6$ letters: A, N, R, S, T, U; however, the alphabetic order is different than in English. A word is any sequence of $6$ different letters. In the dictionary for this language, the first word is SATURN. Which word follows immediately after TURANS? [b]p3.[/b] Benji chooses five integers. For each pair of these numbers, he writes down the pair's sum. Can all ten sums end with different digits? [b]p4.[/b] Nine dwarves live in a house with nine rooms arranged in a $3\times3$ square. On Monday morning, each dwarf rubs noses with the dwarves in the adjacent rooms that share a wall. On Monday night, all the dwarves switch rooms. On Tuesday morning, they again rub noses with their adjacent neighbors. On Tuesday night, they move again. On Wednesday morning, they rub noses for the last time. Show that there are still two dwarves who haven't rubbed noses with one another. [b]p5.[/b] Anna and Bobby take turns placing rooks in any empty square of a pyramid-shaped board with $100$ rows and $200$ columns. If a player places a rook in a square that can be attacked by a previously placed rook, he or she loses. Anna goes first. Can Bobby win no matter how well Anna plays? [img]https://cdn.artofproblemsolving.com/attachments/7/5/b253b655b6740b1e1310037da07a0df4dc9914.png[/img] [u]Round 2[/u] [b]p6.[/b] Some boys and girls, all of different ages, had a snowball fight. Each girl threw one snowball at every kid who was older than her. Each boy threw one snowball at every kid who was younger than him. Three friends were hit by the same number of snowballs, and everyone else took fewer hits than they did. Prove that at least one of the three is a girl. [b]p7.[/b] Last year, jugglers from around the world travelled to Jakarta to participate in the Jubilant Juggling Jamboree. The festival lasted $32$ days, with six solo performances scheduled each day. The organizers noticed that for any two days, there was exactly one juggler scheduled to perform on both days. No juggler performed more than once on a single day. Prove there was a juggler who performed every day. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 Sharygin Geometry Olympiad, 9.3

Let $ABC$ be an acute-angled scalene triangle and $T$ be a point inside it such that $\angle ATB = \angle BTC = 120^o$. A circle centered at point $E$ passes through the midpoints of the sides of $ABC$. For $B, T, E$ collinear, find angle $ABC$.

2017-IMOC, G7

Given $\vartriangle ABC$ with circumcenter $O$. Let $D$ be a point satisfying $\angle ABD = \angle DCA$ and $M$ be the midpoint of $AD$. Suppose that $BM,CM$ intersect circle $(O)$ at another points $E, F$, respectively. Let $P$ be a point on $EF$ so that $AP$ is tangent to circle $(O)$. Prove that $A, P,M,O$ are concyclic. [img]https://2.bp.blogspot.com/-gSgUG6oywAU/XnSKTnH1yqI/AAAAAAAALdw/3NuPFuouCUMO_6KbydE-KIt6gCJ4OgWdACK4BGAYYCw/s320/imoc2017%2Bg7.png[/img]

2005 Irish Math Olympiad, 3

Prove that the sum of the lengths of the medians of a triangle is at least three quarters of its perimeter.

2023 Poland - Second Round, 5

Tags: geometry
Given is a triangle $ABC$ with $AB>AC$. Its incircle touches $AB, AC$ at $D, E$, respectively. Let $CD$ meet the incircle at $K$ and $L$ is the foot of the perpendicular from $A$ to $CK$. If $M$ is the midpoint of $DE$ and $H$ is the orthocenter of $\triangle KML$, prove that $\angle AHK=90^{o}$. [i]Proposed by Dominik Burek[/i]

2021 Korea - Final Round, P1

Tags: trivial , geometry
An acute triangle $\triangle ABC$ and its incenter $I$, circumcenter $O$ is given. The line that is perpendicular to $AI$ and passes $I$ intersects with $AB$, $AC$ in $D$,$E$. The line that is parallel to $BI$ and passes $D$ and the line that is parallel to $CI$ and passes $E$ intersects in $F$. Denote the circumcircle of $DEF$ as $\omega$, and its center as $K$. $\omega$ and $FI$ intersect in $P$($\neq F$). Prove that $O,K,P$ is collinear.

2025 Portugal MO, 2

Tags: geometry
Let $ABCD$ be a quadrilateral such that $\angle A$ and $\angle D$ are acute and $\overline{AB} = \overline{BC} = \overline{CD}$. Suppose that $\angle BDA = 30^\circ$, prove that $\angle DAC= 30^\circ$.

1979 IMO Longlists, 12

We consider a prism which has the upper and inferior basis the pentagons: $A_{1}A_{2}A_{3}A_{4}A_{5}$ and $B_{1}B_{2}B_{3}B_{4}B_{5}$. Each of the sides of the two pentagons and the segments $A_{i}B_{j}$ with $i,j=1,\ldots,5$ is colored in red or blue. In every triangle which has all sides colored there exists one red side and one blue side. Prove that all the 10 sides of the two basis are colored in the same color.

2016 Miklós Schweitzer, 8

For which integers $n>1$ does there exist a rectangle that can be subdivided into $n$ pairwise noncongruent rectangles similar to the original rectangle?

2019 Taiwan TST Round 1, 1

Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.

2018 Czech-Polish-Slovak Match, Source

[url=https://artofproblemsolving.com/community/c678145][b]Czech-Polish-Slovak Match 2018[/b][/url] [b]Austria, 24 - 27 June 2018[/b] [url=http://artofproblemsolving.com/community/c6h1667029p10595005][b]Problem 1.[/b][/url] Determine all functions $f : \mathbb R \to \mathbb R$ such that for all real numbers $x$ and $y$, $$f(x^2 + xy) = f(x)f(y) + yf(x) + xf(x+y).$$ [i]Proposed by Walther Janous, Austria[/i] [url=http://artofproblemsolving.com/community/c6h1667030p10595011][b]Problem 2.[/b][/url] Let $ABC$ be an acute scalene triangle. Let $D$ and $E$ be points on the sides $AB$ and $AC$, respectively, such that $BD=CE$. Denote by $O_1$ and $O_2$ the circumcentres of the triangles $ABE$ and $ACD$, respectively. Prove that the circumcircles of the triangles $ABC, ADE$, and $AO_1O_2$ have a common point different from $A$. [i]Proposed by Patrik Bak, Slovakia[/i] [url=http://artofproblemsolving.com/community/c6h1667031p10595016][b]Problem 3.[/b][/url] There are $2018$ players sitting around a round table. At the beginning of the game we arbitrarily deal all the cards from a deck of $K$ cards to the players (some players may receive no cards). In each turn we choose a player who draws one card from each of the two neighbors. It is only allowed to choose a player whose each neighbor holds a nonzero number of cards. The game terminates when there is no such player. Determine the largest possible value of $K$ such that, no matter how we deal the cards and how we choose the players, the game always terminates after a finite number of turns. [i]Proposed by Peter Novotný, Slovakia[/i] [url=http://artofproblemsolving.com/community/c6h1667033p10595021][b]Problem 4.[/b][/url] Let $ABC$ be an acute triangle with the perimeter of $2s$. We are given three pairwise disjoint circles with pairwise disjoint interiors with the centers $A, B$, and $C$, respectively. Prove that there exists a circle with the radius of $s$ which contains all the three circles. [i]Proposed by Josef Tkadlec, Czechia[/i] [url=http://artofproblemsolving.com/community/c6h1667034p10595023][b]Problem 5.[/b][/url] In a $2 \times 3$ rectangle there is a polyline of length $36$, which can have self-intersections. Show that there exists a line parallel to two sides of the rectangle, which intersects the other two sides in their interior points and intersects the polyline in fewer than $10$ points. [i]Proposed by Josef Tkadlec, Czechia and Vojtech Bálint, Slovakia[/i] [url=http://artofproblemsolving.com/community/c6h1667036p10595032][b]Problem 6.[/b][/url] We say that a positive integer $n$ is [i]fantastic[/i] if there exist positive rational numbers $a$ and $b$ such that $$ n = a + \frac 1a + b + \frac 1b.$$ [b](a)[/b] Prove that there exist infinitely many prime numbers $p$ such that no multiple of $p$ is fantastic. [b](b)[/b] Prove that there exist infinitely many prime numbers $p$ such that some multiple of $p$ is fantastic. [i]Proposed by Walther Janous, Austria[/i]

2013 Harvard-MIT Mathematics Tournament, 10

Tags: geometry
Triangle $ABC$ is inscribed in a circle $\omega$. Let the bisector of angle $A$ meet $\omega$ at $D$ and $BC$ at $E$. Let the reflections of $A$ across $D$ and $C$ be $D'$ and $C'$, respectively. Suppose that $\angle A = 60^o$, $AB = 3$, and $AE = 4$. If the tangent to $\omega$ at $A$ meets line $BC$ at $P$, and the circumcircle of APD' meets line $BC$ at $F$ (other than $P$), compute $FC'$.

1987 Traian Lălescu, 1.2

Tags: geometry
On side $ BC $ of the triangle $ ABC, $ consider points $ M,N, $ such that $ MN=\frac{1}{n}BC. $ Let $ L $ on side $ AC $ such that $ ML $ is parallel with $ AB, Q $ on side $ AB $ such that $ NQ $ is parallel with $ AC, $ and $ O $ is the intersection of $ NQ $ with $ ML. $ The parallel of $ BC $ through $ O $ intersects $ AB,BC $ in $ P, $ respectively, $ K. $ Determine the location of $ M $ so that the sum of the areas of the triangles $ OMN, OKL $ and $ OPQ $ is minimum, and calculate this minimum in function of $ n $ and the area of $ ABC. $

2015 AIME Problems, 7

Triangle $ABC$ has side lengths $AB=12$, $BC=25$, and $CA=17$. Rectangle $PQRS$ has vertex $P$ on $\overline{AB}$, vertex $Q$ on $\overline{AC}$, and vertices $R$ and $S$ on $\overline{BC}$. In terms of the side length $PQ=w$, the area of $PQRS$ can be expressed as the quadratic polynomial \[\text{Area}(PQRS)=\alpha w-\beta\cdot w^2\] Then the coefficient $\beta=\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2015 Saudi Arabia GMO TST, 3

Let $ABC$ be a triangle and $G$ its centroid. Let $G_a, G_b$ and $G_c$ be the orthogonal projections of $G$ on sides $BC, CA$, respectively $AB$. If $S_a, S_b$ and $S_c$ are the symmetrical points of $G_a, G_b$, respectively $G_c$ with respect to $G$, prove that $AS_a, BS_b$ and $CS_c$ are concurrent. Liana Topan

1997 Belarusian National Olympiad, 2

Tags: geometry
$$Problem 2:$$ Points $D$ and $E$ are taken on side $CB$ of triangle $ABC$, with $D$ between $C$ and $E$, such that $\angle BAE =\angle CAD$. If $AC < AB$, prove that $AC.AE < AB.AD$.

1993 All-Russian Olympiad Regional Round, 11.6

Seven tetrahedra are placed on the table. For any three of them there exists a horizontal plane cutting them in triangles of equal areas. Show that there exists a plane cutting all seven tetrahedra in triangles of equal areas.

2007 Iran Team Selection Test, 3

Let $\omega$ be incircle of $ABC$. $P$ and $Q$ are on $AB$ and $AC$, such that $PQ$ is parallel to $BC$ and is tangent to $\omega$. $AB,AC$ touch $\omega$ at $F,E$. Prove that if $M$ is midpoint of $PQ$, and $T$ is intersection point of $EF$ and $BC$, then $TM$ is tangent to $\omega$. [i]By Ali Khezeli[/i]

2018 AMC 12/AHSME, 8

Tags: geometry
Line segment $\overline{AB}$ is a diameter of a circle with $AB=24$. Point $C$, not equal to $A$ or $B$, lies on the circle. As point $C$ moves around the circle, the centroid (center of mass) of $\triangle{ABC}$ traces out a closed curve missing two points. To the nearest positive integer, what is the area of the region bounded by this curve? $\textbf{(A)} \text{ 25} \qquad \textbf{(B)} \text{ 38} \qquad \textbf{(C)} \text{ 50} \qquad \textbf{(D)} \text{ 63} \qquad \textbf{(E)} \text{ 75}$

2000 Czech And Slovak Olympiad IIIA, 5

Monika made a paper model of a tetrahedron whose base is a right-angled triangle. When she cut the model along the legs of the base and the median of a lateral face corresponding to one of the legs, she obtained a square of side a. Compute the volume of the tetrahedron.