Found problems: 25757
1993 All-Russian Olympiad Regional Round, 10.8
From a square board $1000\times 1000$ four rectangles $2\times 994$ have been cut off as shown on the picture. Initially, on the marked square there is a centaur - a piece that moves to the adjacent square to the left, up, or diagonally up-right in each move. Two players alternately move the centaur. The one who cannot make a move loses the game. Who has a winning strategy?
[img]https://cdn.artofproblemsolving.com/attachments/c/6/f61c186413b642b5b59f3947bc7a108c772d27.png[/img]
2003 Croatia National Olympiad, Problem 4
Given $8$ unit cubes, $24$ of their faces are painted in blue and the remaining $24$ faces in red. Show that it is always possible to assemble these cubes into a cube of edge $2$ on whose surface there are equally many blue and red unit squares.
2005 South East Mathematical Olympiad, 2
Circle $C$ (with center $O$) does not have common point with line $l$. Draw $OP$ perpendicular to $l$, $P \in l$. Let $Q$ be a point on $l$ ($Q$ is different from $P$), $QA$ and $QB$ are tangent to circle $C$, and intersect the circle at $A$ and $B$ respectively. $AB$ intersects $OP$ at $K$. $PM$, $PN$ are perpendicular to $QB$, $QA$, respectively, $M \in QB$, $N \in QA$. Prove that segment $KP$ is bisected by line $MN$.
2011 Gheorghe Vranceanu, 1
Let be a triangle $ ABC $ that's not equilateral, nor right-angled. Let $ A',B',C' $ be the feet of the heights of $ A,B,C, $ respectively. Prove that the Euler's lines of the triangles $ AB'C',BC'A',CA'B' $ meet at one point on the Euler's circle of $ ABC. $
1991 Dutch Mathematical Olympiad, 2
An angle with vertex $ A$ and measure $ \alpha$ and a point $ P_0$ on one of its rays are given so that $ AP_0\equal{}2$. Point $ P_1$ is chose on the other ray. The sequence of points $ P_1,P_2,P_3,...$ is defined so that $ P_n$ lies on the segment $ AP_{n\minus{}2}$ and the triangle $ P_n P_{n\minus{}1} P_{n\minus{}2}$ is isosceles with $ P_n P_{n\minus{}1}\equal{}P_n P_{n\minus{}2}$ for all $ n \ge 2$.
$ (a)$ Prove that for each value of $ \alpha$ there is a unique point $ P_1$ for which the sequence $ P_1,P_2,...,P_n,...$ does not terminate.
$ (b)$ Suppose that the sequence $ P_1,P_2,...$ does not terminate and that the length of the polygonal line $ P_0 P_1 P_2 ... P_k$ tends to $ 5$ when $ k \rightarrow \infty$. Compute the length of $ P_0 P_1$.
2015 BMT Spring, 4
Triangle $ABC$ has side lengths $AB = 3$, $BC = 4$, and $CD = 5$. Draw line $\ell_A$ such that $\ell_A$ is parallel to $BC$ and splits the triangle into two polygons of equal area. Define lines $\ell_B$ and $\ell_C$ analogously. The intersection points of $\ell_A$, $\ell_B$, and $\ell_C$ form a triangle. Determine its area.
2022 Durer Math Competition Finals, 2
Csaba stands in the middle of a $15$ m $\times 15$ m room at a workplace where everyone strictly adheres to $1,5$ m social distancing. At least how many people are there other than Csaba in the room if Csaba cannot reach any wall without the others moving?
[i]The people are viewed as points.[/i]
1954 Poland - Second Round, 5
Given points $ A $, $ B $, $ C $ and $ D $ that do not lie in the same plane. Draw a plane through the point $ A $ such that the orthogonal projection of the quadrilateral $ ABCD $ on this plane is a parallelogram.
2009 Moldova National Olympiad, 8.4
Prove that a right triangle has an angle equal to $30^o$ if and only if the center of the circle inscribed in this triangle is located on the perpendicular bisector of the median taken from the vertex of the right angle of the triangle.
2003 Baltic Way, 15
The diagonals of a cyclic convex quadrilateral $ABCD$ intersect at $P$. A circle through $P$ touches the side $CD$ at its midpoint $M$ and intersects the segments $BD$ and $AC$ again at the points $Q$ and $R$ respectively. Let $S$ be the point on segment $BD$ such that $BS = DQ$. The line through $S$ parallel to $AB$ intersects $AC$ at $T$. Prove that $AT = RC$.
Durer Math Competition CD 1st Round - geometry, 2023.C7
Let $ABCDE$ be a regular pentagon. We drew two circles around $A$ and $B$ with radius $AB$. Let $F$ mark the intersection of the two circles that is inside the pentagon. Let $G$ mark the intersection of lines $EF$ and $AD$. What is the degree measure of angle $AGE$?
1989 IMO Longlists, 40
Let $ ABCD$ be a convex quadrilateral such that the sides $ AB, AD, BC$ satisfy $ AB \equal{} AD \plus{} BC.$ There exists a point $ P$ inside the quadrilateral at a distance $ h$ from the line $ CD$ such that $ AP \equal{} h \plus{} AD$ and $ BP \equal{} h \plus{} BC.$ Show that:
\[ \frac {1}{\sqrt {h}} \geq \frac {1}{\sqrt {AD}} \plus{} \frac {1}{\sqrt {BC}}
\]
2021 Saudi Arabia IMO TST, 5
Let $ABC$ be a non isosceles triangle with incenter $I$ . The circumcircle of the triangle $ABC$ has radius $R$. Let $AL$ be the external angle bisector of $\angle BAC $with $L \in BC$. Let $K$ be the point on perpendicular bisector of $BC$ such that $IL \perp IK$.Prove that $OK=3R$.
2019 India IMO Training Camp, P1
Let the points $O$ and $H$ be the circumcenter and orthocenter of an acute angled triangle $ABC.$ Let $D$ be the midpoint of $BC.$ Let $E$ be the point on the angle bisector of $\angle BAC$ such that $AE\perp HE.$ Let $F$ be the point such that $AEHF$ is a rectangle. Prove that $D,E,F$ are collinear.
2013 Sharygin Geometry Olympiad, 1
All angles of a cyclic pentagon $ABCDE$ are obtuse. The sidelines $AB$ and $CD$ meet at point $E_1$, the sidelines $BC$ and $DE$ meet at point $A_1$. The tangent at $B$ to the circumcircle of the triangle $BE_1C$ meets the circumcircle $\omega$ of the pentagon for the second time at point $B_1$. The tangent at $D$ to the circumcircle of the triangle $DA_1C$ meets $\omega$ for the second time at point $D_1$. Prove that $B_1D_1 // AE$
2021 Vietnam TST, 5
Given a fixed circle $(O)$ and two fixed points $B, C$ on that circle, let $A$ be a moving point on $(O)$ such that $\triangle ABC$ is acute and scalene. Let $I$ be the midpoint of $BC$ and let $AD, BE, CF$ be the three heights of $\triangle ABC$. In two rays $\overrightarrow{FA}, \overrightarrow{EA}$, we pick respectively $M,N$ such that $FM = CE, EN = BF$. Let $L$ be the intersection of $MN$ and $EF$, and let $G \neq L$ be the second intersection of $(LEN)$ and $(LFM)$.
a) Show that the circle $(MNG)$ always goes through a fixed point.
b) Let $AD$ intersects $(O)$ at $K \neq A$. In the tangent line through $D$ of $(DKI)$, we pick $P,Q$ such that $GP \parallel AB, GQ \parallel AC$. Let $T$ be the center of $(GPQ)$. Show that $GT$ always goes through a fixed point.
2008 Germany Team Selection Test, 3
Let $ ABCD$ be an isosceles trapezium. Determine the geometric location of all points $ P$ such that \[ |PA| \cdot |PC| \equal{} |PB| \cdot |PD|.\]
1999 China National Olympiad, 1
Let $ABC$ be an acute triangle with $\angle C>\angle B$. Let $D$ be a point on $BC$ such that $\angle ADB$ is obtuse, and let $H$ be the orthocentre of triangle $ABD$. Suppose that $F$ is a point inside triangle $ABC$ that is on the circumcircle of triangle $ABD$. Prove that $F$ is the orthocenter of triangle $ABC$ if and only if $HD||CF$ and $H$ is on the circumcircle of triangle $ABC$.
1999 Junior Balkan Team Selection Tests - Moldova, 4
Let $ABC$ be an equilateral triangle of area $1998$ cm$^2$. Points $K, L, M$ divide the segments $[AB], [BC] ,[CA]$, respectively, in the ratio $3:4$ . Line $AL$ intersects the lines $CK$ and $BM$ respectively at the points $P$ and $Q$, and the line $BM$ intersects the line $CK$ at point $R$. Find the area of the triangle $PQR$.
2019 Ecuador NMO (OMEC), 2
Let $ABC$ be a triangle and $D$ be a point on segment $AC$. The circumscribed circle of the triangle $BDC$ cuts $AB$ again at $E$ and the circumference circle of the triangle $ABD$ cuts $BC$ again at $F$. Prove that $AE = CF$ if and only if $BD$ is the interior bisector of $\angle ABC$.
2020 SMO, 5
In triangle $\triangle ABC$, let $E$ and $F$ be points on sides $AC$ and $AB$, respectively, such that $BFEC$ is cyclic. Let lines $BE$ and $CF$ intersect at point $P$, and $M$ and $N$ be the midpoints of $\overline{BF}$ and $\overline{CE}$, respectively. If $U$ is the foot of the perpendicular from $P$ to $BC$, and the circumcircles of triangles $\triangle BMU$ and $\triangle CNU$ intersect at second point $V$ different from $U$, prove that $A, P,$ and $V$ are collinear.
[i]Proposed by Andrew Wen and William Yue[/i]
2019-IMOC, G4
$\vartriangle ABC$ is a scalene triangle with circumcircle $\Omega$. For a arbitrary $X$ in the plane, define $D_x,E_x, F_x$ to be the intersection of tangent line of $X$ (with respect to $BXC$) and $BC,CA,AB$, respectively. Let the intersection of $AX$ with $\Omega$ be $S_x$ and $T_x = D_xS_x \cap \Omega$. Show that $\Omega$ and circumcircle of $\vartriangle T_xE_xF_x$ are tangent to each other.
[img]https://2.bp.blogspot.com/-rTMODHbs5Ac/XnYNQYjYzBI/AAAAAAAALeg/576nGDQ6NDA0-W5XqiNczNtI07cEZxPeQCK4BGAYYCw/s1600/imoc2019g4.png[/img]
2020 BMT Fall, Tie 3
In unit cube $ABCDEFGH$ (with faces $ABCD$, $EFGH$ and connecting vertices labeled so that $\overline{AE}$, $\overline{BF}$, $\overline{CG}$, $\overline{DH}$ are edges of the cube), $L$ is the midpoint of $GH$. The area of $\vartriangle CAL$ can be written in the form $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Compute $m + n$.
2019 BMT Spring, 11
A regular $17$-gon with vertices $V_1, V_2, . . . , V_{17}$ and sides of length $3$ has a point $ P$ on $V_1V_2$ such that $V_1P = 1$. A chord that stretches from $V_1$ to $V_2$ containing $ P$ is rotated within the interior of the heptadecagon around $V_2$ such that the chord now stretches from $V_2$ to $V_3$. The chord then hinges around $V_3$, then $V_4$, and so on, continuing until $ P$ is back at its original position. Find the total length traced by $ P$.
1999 Miklós Schweitzer, 9
Let $P_1,...,P_n$ and $Q_1,...,Q_n$ be oppositely oriented convex polygons. Prove that there is a line passing through the n line segments $P_1Q_1,...,P_nQ_n$.