Found problems: 25757
2017 Federal Competition For Advanced Students, 2
Let $ABCDE$ be a regular pentagon with center $M$. A point $P$ (different from $M$) is chosen on the line
segment $MD$. The circumcircle of $ABP$ intersects the line segment $AE$ in $A$ and $Q$ and
the line through $P$ perpendicular to $CD$ in $P$ and $R$.
Prove that $AR$ and $QR$ have same length.
[i]proposed by Stephan Wagner[/i]
2015 CCA Math Bonanza, T1
An archery target can be represented as three concentric circles with radii $3$, $2$, and $1$ which split the target into $3$ regions, as shown in the figure below. What is the area of Region $1$ plus the area of Region $3$?
[i]2015 CCA Math Bonanza Team Round #1[/i]
1988 IMO Longlists, 89
We match sets $ M$ of points in the coordinate plane to sets $ M*$ according to the rule that $ (x*,y*) \in M*$ if and only if $ x \cdot x* \plus{} y \cdot y* \leq 1$ whenever $ (x,y) \in M.$ Find all triangles $ Q$ such that $ Q*$ is the reflection of $ Q$ in the origin.
2010 Singapore Senior Math Olympiad, 1
In the $\triangle ABC$ with $AC>BC$ and $\angle B<90^{\circ}$, $D$ is the foot of the perpendicular from $A$ onto $BC$ and $E$ is the foot of perpendicular from $D$ onto $AC$. Let $F$ be the point on the segment $DE$ such that $EF \cdot DC=BD \cdot DE$. Prove that $AF$ is perpendicular to $BF$.
May Olympiad L1 - geometry, 2005.4
There are two paper figures: an equilateral triangle and a rectangle. The height of rectangle is equal to the height of the triangle and the base of the rectangle is equal to the base of the triangle. Divide the triangle into three parts and the rectangle into two, using straight cuts, so that with the five pieces can be assembled, without gaps or overlays, a equilateral triangle. To assemble the figure, each part can be rotated and / or turned around.
2009 Princeton University Math Competition, 7
You are given a convex pentagon $ABCDE$ with $AB=BC$, $CD=DE$, $\angle{ABC}=150^\circ$, $\angle{BCD} = 165^\circ$, $\angle{CDE}=30^\circ$, $BD=6$. Find the area of this pentagon. Round your answer to the nearest integer if necessary.
[asy]
pathpen = rgb(0,0,0.6)+linewidth(0.7); pointpen = black+linewidth(3); pointfontpen = fontsize(10);
pair A = (0,0), B = (0.8,-1.8), C = B+rotate(-150)*(A-B), D = IP(CR(B,6), C--C+rotate(-165)*6*(B-C)), E = D+rotate(-30)*(C-D); D(D("B",B,W)--D("C",C,SW)--D("D",D,plain.E)--D("E",E,NE)--D("A",A,NW)--B--D);
[/asy]
Estonia Open Senior - geometry, 1999.1.5
On the side $BC$ of the triangle $ABC$ a point $D$ different from $B$ and $C$ is chosen so that the bisectors of the angles $ACB$ and $ADB$ intersect on the side $AB$. Let $D'$ be the symmetrical point to $D$ with respect to the line $AB$. Prove that the points $C, A$ and $D'$ are on the same line.
1966 IMO Shortlist, 15
Given four points $A,$ $B,$ $C,$ $D$ on a circle such that $AB$ is a diameter and $CD$ is not a diameter. Show that the line joining the point of intersection of the tangents to the circle at the points $C$ and $D$ with the point of intersection of the lines $AC$ and $BD$ is perpendicular to the line $AB.$
2023 Stanford Mathematics Tournament, 2
Triangle $\vartriangle ABC$ has side lengths $AB = 39$, $BC = 16$, and $CA = 25$. What is the volume of the solid formed by rotating $\vartriangle ABC$ about line $BC$?
2005 AMC 10, 12
The figure shown is called a [i]trefoil[/i] and is constructed by drawing circular sectors about sides of the congruent equilateral triangles. What is the area of a trefoil whose horizontal base has length $ 2$?
[asy]unitsize(1.5cm);
defaultpen(linewidth(.8pt)+fontsize(12pt));
pair O=(0,0), A=dir(0), B=dir(60), C=dir(120), D=dir(180);
pair E=B+C;
draw(D--E--B--O--C--B--A,linetype("4 4"));
draw(Arc(O,1,0,60),linewidth(1.2pt));
draw(Arc(O,1,120,180),linewidth(1.2pt));
draw(Arc(C,1,0,60),linewidth(1.2pt));
draw(Arc(B,1,120,180),linewidth(1.2pt));
draw(A--D,linewidth(1.2pt));
draw(O--dir(40),EndArrow(HookHead,4));
draw(O--dir(140),EndArrow(HookHead,4));
draw(C--C+dir(40),EndArrow(HookHead,4));
draw(B--B+dir(140),EndArrow(HookHead,4));
label("2",O,S);
draw((0.1,-0.12)--(1,-0.12),EndArrow(HookHead,4),EndBar);
draw((-0.1,-0.12)--(-1,-0.12),EndArrow(HookHead,4),EndBar);[/asy]$ \textbf{(A)}\ \frac13\pi\plus{}\frac{\sqrt3}{2} \qquad
\textbf{(B)}\ \frac23\pi \qquad
\textbf{(C)}\ \frac23\pi\plus{}\frac{\sqrt3}{4} \qquad
\textbf{(D)}\ \frac23\pi\plus{}\frac{\sqrt3}{3} \qquad
\textbf{(E)}\ \frac23\pi\plus{}\frac{\sqrt3}{2}$
LMT Team Rounds 2021+, 5
In rectangle $ABCD$, $AB = 40$ and $AD = 30$. Let $C' $ be the reflection of $C$ over $BD$. Find the length of $AC'$.
1966 IMO Longlists, 6
Let $m$ be a convex polygon in a plane, $l$ its perimeter and $S$ its area. Let $M\left( R\right) $ be the locus of all points in the space whose distance to $m$ is $\leq R,$ and $V\left(R\right) $ is the volume of the solid $M\left( R\right) .$
[i]a.)[/i] Prove that \[V (R) = \frac 43 \pi R^3 +\frac{\pi}{2} lR^2 +2SR.\]
Hereby, we say that the distance of a point $C$ to a figure $m$ is $\leq R$ if there exists a point $D$ of the figure $m$ such that the distance $CD$ is $\leq R.$ (This point $D$ may lie on the boundary of the figure $m$ and inside the figure.)
additional question:
[i]b.)[/i] Find the area of the planar $R$-neighborhood of a convex or non-convex polygon $m.$
[i]c.)[/i] Find the volume of the $R$-neighborhood of a convex polyhedron, e. g. of a cube or of a tetrahedron.
[b]Note by Darij:[/b] I guess that the ''$R$-neighborhood'' of a figure is defined as the locus of all points whose distance to the figure is $\leq R.$
2010 CHMMC Fall, 2
In triangles ABC and DEF, DE = 4AB, EF = 4BC, and F D = 4CA. The area of
DEF is 360 units more than the area of ABC. Compute the area of ABC.
2003 AMC 10, 7
How many non-congruent triangles with perimeter $ 7$ have integer side lengths?
$ \textbf{(A)}\ 1 \qquad
\textbf{(B)}\ 2 \qquad
\textbf{(C)}\ 3 \qquad
\textbf{(D)}\ 4 \qquad
\textbf{(E)}\ 5$
2014 Cuba MO, 3
Let $\Gamma_1$ and $\Gamma_2$ be the circles with diameters $AP$ and $AQ$. Let $T$ be another point of intersection of the circles $\Gamma_1$ and $\Gamma_2$. Let $Q_1$ be another point of intersection of the circle $\Gamma_1$ and the line $AQ$, and $P_1$ the other point of intersection of the circle $\Gamma_2$ and the line $AP$. The circle $\Gamma_3$ passes through the points $T$, $P$ and $P_1$ and the circle $\Gamma_4$ passes through the points $T$, $Q$ and $Q_1$. Prove that the line containing the common chord of the circles $\Gamma_3$ and $\Gamma_4$ passes through$A$.
2011 ISI B.Stat Entrance Exam, 5
$ABCD$ is a trapezium such that $AB\parallel DC$ and $\frac{AB}{DC}=\alpha >1$. Suppose $P$ and $Q$ are points on $AC$ and $BD$ respectively, such that
\[\frac{AP}{AC}=\frac{BQ}{BD}=\frac{\alpha -1}{\alpha+1}\]
Prove that $PQCD$ is a parallelogram.
1960 Kurschak Competition, 3
$E$ is the midpoint of the side $AB$ of the square $ABCD$, and $F, G$ are any points on the sides $BC$, $CD$ such that $EF$ is parallel to $AG$. Show that $FG$ touches the inscribed circle of the square.
2010 Spain Mathematical Olympiad, 2
In a triangle $ABC$, let $P$ be a point on the bisector of $\angle BAC$ and let $A',B'$ and $C'$ be points on lines $BC,CA$ and $AB$ respectively such that $PA'$ is perpendicular to $BC,PB'\perp AC$, and $PC'\perp AB$. Prove that $PA'$ and $B'C'$ intersect on the median $AM$, where $M$ is the midpoint of $BC$.
2011 Sharygin Geometry Olympiad, 7
Points $P$ and $Q$ on sides $AB$ and $AC$ of triangle $ABC$ are such that $PB = QC$. Prove that $PQ < BC$.
2011 Estonia Team Selection Test, 1
Two circles lie completely outside each other.Let $A$ be the point of intersection of internal common tangents of the circles and let $K$ be the projection of this point onto one of their external common tangents.The tangents,different from the common tangent,to the circles through point $K$ meet the circles at $M_1$ and $M_2$.Prove that the line $AK$ bisects angle $M_1 KM_2$.
2022 Korea -Final Round, P1
Let $ABC$ be an acute triangle with circumcenter $O$, and let $D$, $E$, and $F$ be the feet of altitudes from $A$, $B$, and $C$ to sides $BC$, $CA$, and $AB$, respectively. Denote by $P$ the intersection of the tangents to the circumcircle of $ABC$ at $B$ and $C$. The line through $P$ perpendicular to $EF$ meets $AD$ at $Q$, and let $R$ be the foot of the perpendicular from $A$ to $EF$. Prove that $DR$ and $OQ$ are parallel.
2010 Abels Math Contest (Norwegian MO) Final, 1b
The edges of the square in the figure have length $1$.
Find the area of the marked region in terms of $a$, where $0 \le a \le 1$.
[img]https://cdn.artofproblemsolving.com/attachments/2/2/f2b6ca973f66c50e39124913b3acb56feff8bb.png[/img]
2005 Georgia Team Selection Test, 11
On the sides $ AB, BC, CD$ and $ DA$ of the rhombus $ ABCD$, respectively, are chosen points $ E, F, G$ and $ H$ so, that $ EF$ and $ GH$ touch the incircle of the rhombus. Prove that the lines $ EH$ and $ FG$ are parallel.
2012 National Olympiad First Round, 5
$\triangle ABC$ is given with $|AB|=7, |BC|=12$, and $|CA|=13$. Let $D$ be a point on $[BC]$ such that $|BD|=5$. Let $r_1$ and $r_2$ be the inradii of $\triangle ABD$ and $\triangle ACD$, respectively. What is $r_1/r_2$?
$ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ \frac{13}{12} \qquad \textbf{(C)}\ \frac{7}{5} \qquad \textbf{(D)}\ \frac{3}{2} \qquad \textbf{(E)}\ \text{None}$
2009 Sharygin Geometry Olympiad, 5
Given triangle $ ABC$. Point $ O$ is the center of the excircle touching the side $ BC$. Point $ O_1$ is the reflection of $ O$ in $ BC$. Determine angle $ A$ if $ O_1$ lies on the circumcircle of $ ABC$.