This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2020 Brazil Team Selection Test, 1

Let $\Gamma$ be the circumcircle of $\triangle ABC$. Let $D$ be a point on the side $BC$. The tangent to $\Gamma$ at $A$ intersects the parallel line to $BA$ through $D$ at point $E$. The segment $CE$ intersects $\Gamma$ again at $F$. Suppose $B$, $D$, $F$, $E$ are concyclic. Prove that $AC$, $BF$, $DE$ are concurrent.

2004 AMC 12/AHSME, 20

Select numbers $ a$ and $ b$ between $ 0$ and $ 1$ independently and at random, and let $ c$ be their sum. Let $ A, B$ and $ C$ be the results when $ a, b$ and $ c$, respectively, are rounded to the nearest integer. What is the probability that $ A \plus{} B \equal{} C$? $ \textbf{(A)}\ \frac14 \qquad \textbf{(B)}\ \frac13 \qquad \textbf{(C)}\ \frac12 \qquad \textbf{(D)}\ \frac23 \qquad \textbf{(E)}\ \frac34$

2004 Romania National Olympiad, 1

Tags: parabola , conic , geometry
Let $n \geq 3$ be an integer and $F$ be the focus of the parabola $y^2=2px$. A regular polygon $A_1 A_2 \ldots A_n$ has the center in $F$ and none of its vertices lie on $Ox$. $\left( FA_1 \right., \left( FA_2 \right., \ldots, \left( FA_n \right.$ intersect the parabola at $B_1,B_2,\ldots,B_n$. Prove that \[ FB_1 + FB_2 + \ldots + FB_n > np . \] [i]Calin Popescu[/i]

1982 IMO Shortlist, 6

Let $S$ be a square with sides length $100$. Let $L$ be a path within $S$ which does not meet itself and which is composed of line segments $A_0A_1,A_1A_2,A_2A_3,\ldots,A_{n-1}A_n$ with $A_0=A_n$. Suppose that for every point $P$ on the boundary of $S$ there is a point of $L$ at a distance from $P$ no greater than $\frac {1} {2}$. Prove that there are two points $X$ and $Y$ of $L$ such that the distance between $X$ and $Y$ is not greater than $1$ and the length of the part of $L$ which lies between $X$ and $Y$ is not smaller than $198$.

1996 AMC 8, 17

Figure $OPQR$ is a square. Point $O$ is the origin, and point $Q$ has coordinates $(2,2)$. What are the coordinates for $T$ so that the area of triangle $PQT$ equals the area of square $OPQR$? [asy] pair O,P,Q,R,T; O = (0,0); P = (2,0); Q = (2,2); R = (0,2); T = (-4,0); draw((-5,0)--(3,0)); draw((0,-1)--(0,3)); draw(P--Q--R); draw((-0.2,-0.8)--(0,-1)--(0.2,-0.8)); draw((-0.2,2.8)--(0,3)--(0.2,2.8)); draw((-4.8,-0.2)--(-5,0)--(-4.8,0.2)); draw((2.8,-0.2)--(3,0)--(2.8,0.2)); draw(Q--T); label("$O$",O,SW); label("$P$",P,S); label("$Q$",Q,NE); label("$R$",R,W); label("$T$",T,S); [/asy] NOT TO SCALE $\text{(A)}\ (-6,0) \qquad \text{(B)}\ (-4,0) \qquad \text{(C)}\ (-2,0) \qquad \text{(D)}\ (2,0) \qquad \text{(E)}\ (4,0)$

2012 National Olympiad First Round, 21

The angle bisector of vertex $A$ of $\triangle ABC$ cuts $[BC]$ at $D$. The circle passing through $A$ and touching to $BC$ at $D$ meets $[AB]$ and $[AC]$ at $P$ and $Q$, respectively. $AD$ and $PQ$ meet at $T$. If $|AB|=5, |BC|=6, |CA|=7$, then $\frac{|AT|}{|TD|}=?$ $ \textbf{(A)}\ \frac75 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ \frac72 \qquad \textbf{(E)}\ 4$

2022 BMT, 7

Tags: geometry
A regular hexagon is inscribed in a circle of radius $1$, and all diagonals between vertices that have exactly one vertex between them are drawn. Compute the area of the hexagon enclosed by all of the diagonals.

2024 Chile Junior Math Olympiad, 6

In a regular polygon with 100 vertices, 10 vertices are painted blue, and 10 other vertices are painted red. 1. Prove that there exist two distinct blue vertices \( A_1 \) and \( A_2 \), and two distinct red vertices \( R_1 \) and \( R_2 \), such that the distance between \( A_1 \) and \( R_1 \) is equal to the distance between \( A_2 \) and \( R_2 \). 2. Prove that there exist two distinct blue vertices \( A_1 \) and \( A_2 \), and two distinct red vertices \( R_1 \) and \( R_2 \), such that the distance between \( A_1 \) and \( A_2 \) is equal to the distance between \( R_1 \) and \( R_2 \).

Kyiv City MO Juniors 2003+ geometry, 2020.9.4

Let the point $D$ lie on the arc $AC$ of the circumcircle of the triangle $ABC$ ($AB < BC$), which does not contain the point $B$. On the side $AC$ are selected an arbitrary point $X$ and a point $X'$ for which $\angle ABX= \angle CBX'$. Prove that regardless of the choice of the point $X$, the circle circumscribed around $\vartriangle DXX'$, passes through a fixed point, which is different from point $D$. (Nikolaev Arseniy)

2012 China Team Selection Test, 1

Given two circles ${\omega _1},{\omega _2}$, $S$ denotes all $\Delta ABC$ satisfies that ${\omega _1}$ is the circumcircle of $\Delta ABC$, ${\omega _2}$ is the $A$- excircle of $\Delta ABC$ , ${\omega _2}$ touches $BC,CA,AB$ at $D,E,F$. $S$ is not empty, prove that the centroid of $\Delta DEF$ is a fixed point.

1995 All-Russian Olympiad, 4

Tags: geometry
Prove that if all angles of a convex $n$-gon are equal, then there are at least two of its sides that are not longer than their adjacent sides. [i]A. Berzin’sh, O. Musin[/i]

Geometry Mathley 2011-12, 6.1

Show that the circumradius $R$ of a triangle $ABC$ equals the arithmetic mean of the oriented distances from its incenter $I$ and three excenters $I_a,I_b, I_c$ to any tangent $\tau$ to its circumcircle. In other words, if $\delta(P)$ denotes the distance from a point $P$ to $\tau$, then with appropriate choices of signs, we have $$\delta(I) \pm \delta_(I_a) \pm \delta_(I_b) \pm \delta_(I_c) = 4R$$ Luis González

1954 Moscow Mathematical Olympiad, 275

How many axes of symmetry can a heptagon have?

2008 China Girls Math Olympiad, 3

Determine the least real number $ a$ greater than $ 1$ such that for any point $ P$ in the interior of the square $ ABCD$, the area ratio between two of the triangles $ PAB$, $ PBC$, $ PCD$, $ PDA$ lies in the interval $ \left[\frac {1}{a},a\right]$.

Kyiv City MO Juniors Round2 2010+ geometry, 2012.7.3

In the triangle $ABC $ the median $BD$ is drawn, which is divided into three equal parts by the points $E $ and $F$ ($BE = EF = FD$). It is known that $AD = AF$ and $AB = 1$. Find the length of the segment $CE$.

2014 AMC 10, 19

Two concentric circles have radii $1$ and $2$. Two points on the outer circle are chosen independently and uniformly at random. What is the probability that the chord joining the two points intersects the inner circle? $\textbf{(A) }\frac{1}{6}\qquad\textbf{(B) }\frac{1}{4}\qquad\textbf{(C) }\frac{2-\sqrt{2}}{2}\qquad\textbf{(D) }\frac{1}{3}\qquad\textbf{(E) }\frac{1}{2}\qquad$

2014 HMNT, 4

How many ways are there to color the vertices of a triangle red, green, blue, or yellow such that no two vertices have the same color? Rotations and reflections are considered distinct.

2014 Saudi Arabia GMO TST, 3

Let $ABCDE$ be a cyclic pentagon such that the diagonals $AC$ and $AD$ intersect $BE$ at $P$ and $Q$, respectively, with $BP \cdot QE = PQ^2$. Prove that $BC \cdot DE = CD \cdot PQ$.

1952 Czech and Slovak Olympiad III A, 3

Tags: geometry
Let $ABCD$ be a convex quadrilateral with $AB=CD$. Let $R,S$ be midpoints of sides $AD,BC$ respectively. Consider rays $AU, DV$ parallel with ray $RS$ and all of them point in the same direction. Show that $\angle BAU=\angle CDV$.

2007 Princeton University Math Competition, 3

Tags: geometry
Points $P_1, P_2, P_3,$ and $P_4$ are $(0,0), (10, 20), (5, 15),$ and $(12, -6)$, respectively. For what point $P \in \mathbb{R}^2$ is the sum of the distances from $P$ to the other $4$ points minimal?

2019 IOM, 5

We are given a convex four-sided pyramid with apex $S$ and base face $ABCD$ such that the pyramid has an inscribed sphere (i.e., it contains a sphere which is tangent to each race). By making cuts along the edges $SA,SB,SC,SD$ and rotating the faces $SAB,SBC,SCD,SDA$ outwards into the plane $ABCD$, we unfold the pyramid into the polygon $AKBLCMDN$ as shown in the figure. Prove that $K,L,M,N$ are concyclic. [i] Tibor Bakos and Géza Kós [/i]

1998 Rioplatense Mathematical Olympiad, Level 3, 5

We say that $M$ is the midpoint of the open polygonal $XYZ$, formed by the segments $XY, YZ$, if $M$ belongs to the polygonal and divides its length by half. Let $ABC$ be a acute triangle with orthocenter $H$. Let $A_1, B_1,C_1,A_2, B_2,C_2$ be the midpoints of the open polygonal $CAB, ABC, BCA, BHC, CHA, AHB$, respectively. Show that the lines $A_1 A_2, B_1B_2$ and $C_1C_2$ are concurrent.

1999 Harvard-MIT Mathematics Tournament, 2

A ladder is leaning against a house with its lower end $15$ feet from the house. When the lower end is pulled $9$ feet farther from the house, the upper end slides $13$ feet down. How long is the ladder (in feet)?

2014 ELMO Shortlist, 3

We say a finite set $S$ of points in the plane is [i]very[/i] if for every point $X$ in $S$, there exists an inversion with center $X$ mapping every point in $S$ other than $X$ to another point in $S$ (possibly the same point). (a) Fix an integer $n$. Prove that if $n \ge 2$, then any line segment $\overline{AB}$ contains a unique very set $S$ of size $n$ such that $A, B \in S$. (b) Find the largest possible size of a very set not contained in any line. (Here, an [i]inversion[/i] with center $O$ and radius $r$ sends every point $P$ other than $O$ to the point $P'$ along ray $OP$ such that $OP\cdot OP' = r^2$.) [i]Proposed by Sammy Luo[/i]

2017 Saudi Arabia Pre-TST + Training Tests, 3

Let $ABCD$ be a convex quadrilateral. Ray $AD$ meets ray $BC$ at $P$. Let $O,O'$ be the circumcenters of triangles $PCD, PAB$, respectively, $H,H'$ be the orthocenters of triangles $PCD, PAB$, respectively. Prove that circumcircle of triangle $DOC$ is tangent to circumcircle of triangle $AO'B$ if and only if circumcircle of triangle $DHC$ is tangent to circumcircle of triangle $AH'B$.