This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2019 AMC 10, 5

Triangle $ABC$ lies in the first quadrant. Points $A$, $B$, and $C$ are reflected across the line $y=x$ to points $A'$, $B'$, and $C'$, respectively. Assume that none of the vertices of the triangle lie on the line $y=x$. Which of the following statements is [u][i]not[/i][/u] always true? $(A)$ Triangle $A'B'C'$ lies in the first quadrant. $(B)$ Triangles $ABC$ and $A'B'C'$ have the same area. $(C)$ The slope of line $AA'$ is $-1$. $(D)$ The slopes of lines $AA'$ and $CC'$ are the same. $(E)$ Lines $AB$ and $A'B'$ are perpendicular to each other.

2011 Postal Coaching, 5

The seats in the Parliament of some country are arranged in a rectangle of $10$ rows of $10$ seats each. All the $100$ $MP$s have different salaries. Each of them asks all his neighbours (sitting next to, in front of, or behind him, i.e. $4$ members at most) how much they earn. They feel a lot of envy towards each other: an $MP$ is content with his salary only if he has at most one neighbour who earns more than himself. What is the maximum possible number of $MP$s who are satisfied with their salaries?

1912 Eotvos Mathematical Competition, 3

Prove that the diagonals of a quadrilateral are perpendicular if and only if the sum of the squares of one pair of opposite sides equals that of the other.

2006 AMC 10, 10

In a triangle with integer side lengths, one side is three times as long as a second side, and the length of the third side is 15. What is the greatest possible perimeter of the triangle? $ \textbf{(A) } 43 \qquad \textbf{(B) } 44 \qquad \textbf{(C) } 45 \qquad \textbf{(D) } 46 \qquad \textbf{(E) } 47$

2023 China Team Selection Test, P19

Tags: geometry
Let $A,B$ be two fixed points on the unit circle $\omega$, satisfying $\sqrt{2} < AB < 2$. Let $P$ be a point that can move on the unit circle, and it can move to anywhere on the unit circle satisfying $\triangle ABP$ is acute and $AP>AB>BP$. Let $H$ be the orthocenter of $\triangle ABP$ and $S$ be a point on the minor arc $AP$ satisfying $SH=AH$. Let $T$ be a point on the minor arc $AB$ satisfying $TB || AP$. Let $ST\cap BP = Q$. Show that (recall $P$ varies) the circle with diameter $HQ$ passes through a fixed point.

2018 Korea - Final Round, 6

Twenty ants live on the faces of an icosahedron, one ant on each side, where the icosahedron have each side with length 1. Each ant moves in a counterclockwise direction on each face, along the side/edges. The speed of each ant must be no less than 1 always. Also, if two ants meet, they should meet at the vertex of the icosahedron. If five ants meet at the same time at a vertex, we call that a [i]collision[/i]. Can the ants move forever, in a way that no [i]collision[/i] occurs?

2019 JHMT, 3

Tags: geometry
Square $ABCD$ has side length of $2$. Quarter-circle arcs $BD$ (centered at $C$) and $AC$ (centered at $D$) divide $ABCD$ into four sections. The area of the smallest of the four sections that are formed can be expressed as $a - \frac{b\pi }{c} - \sqrt{d}$. Find abcd, where $a, b, c$ and $d$ are integers, $ \sqrt{d}$ is a written in simplestradical form, and $\frac{b}{c}$ is written in simplest form.

1952 Putnam, B6

Tags: ellipse , conic , geometry
Prove the necessary and sufficient condition that a triangle inscribed in an ellipse shall have maximum area is that its centroid coincides with the center of the ellipse.

2010 Benelux, 3

Tags: geometry
On a line $l$ there are three different points $A$, $B$ and $P$ in that order. Let $a$ be the line through $A$ perpendicular to $l$, and let $b$ be the line through $B$ perpendicular to $l$. A line through $P$, not coinciding with $l$, intersects $a$ in $Q$ and $b$ in $R$. The line through $A$ perpendicular to $BQ$ intersects $BQ$ in $L$ and $BR$ in $T$. The line through $B$ perpendicular to $AR$ intersects $AR$ in $K$ and $AQ$ in $S$. (a) Prove that $P$, $T$, $S$ are collinear. (b) Prove that $P$, $K$, $L$ are collinear. [i](2nd Benelux Mathematical Olympiad 2010, Problem 3)[/i]

2014 Bulgaria National Olympiad, 3

A real number $f(X)\neq 0$ is assigned to each point $X$ in the space. It is known that for any tetrahedron $ABCD$ with $O$ the center of the inscribed sphere, we have : \[ f(O)=f(A)f(B)f(C)f(D). \] Prove that $f(X)=1$ for all points $X$. [i]Proposed by Aleksandar Ivanov[/i]

2004 Bulgaria Team Selection Test, 1

The points $P$ and $Q$ lie on the diagonals $AC$ and $BD$, respectively, of a quadrilateral $ABCD$ such that $\frac{AP}{AC} + \frac{BQ}{BD} =1$. The line $PQ$ meets the sides $AD$ and $BC$ at points $M$ and $N$. Prove that the circumcircles of the triangles $AMP$, $BNQ$, $DMQ$, and $CNP$ are concurrent.

1986 IMO Shortlist, 1

Let $A,B$ be adjacent vertices of a regular $n$-gon ($n\ge5$) with center $O$. A triangle $XYZ$, which is congruent to and initially coincides with $OAB$, moves in the plane in such a way that $Y$ and $Z$ each trace out the whole boundary of the polygon, with $X$ remaining inside the polygon. Find the locus of $X$.

2015 JBMO TST - Turkey, 6

Tags: geometry , algebra
Find the greatest possible integer value of the side length of an equilateral triangle whose vertices belong to the interior region of a square with side length $100$.

1987 Bundeswettbewerb Mathematik, 4

Place the integers $1,2 , \ldots, n^{3}$ in the cells of a $n\times n \times n$ cube such that every number appears once. For any possible enumeration, write down the maximal difference between any two adjacent cells (adjacent means having a common vertex). What is the minimal number noted down?

2023 Federal Competition For Advanced Students, P1, 2

Tags: geometry
Given is a triangle $ABC$. The points $P, Q$ lie on the extensions of $BC$ beyond $B, C$, respectively, such that $BP=BA$ and $CQ=CA$. Prove that the circumcenter of triangle $APQ$ lies on the angle bisector of $\angle BAC$.

2022 Poland - Second Round, 2

Given a cyclic quadriteral $ABCD$. The circumcenter lies in the quadriteral $ABCD$. Diagonals $AC$ and $BD$ intersects at $S$. Points $P$ and $Q$ are the midpoints of $AD$ and $BC$. Let $p$ be a line perpendicular to $AC$ through $P$, $q$ perpendicular line to $BD$ through $Q$ and $s$ perpendicular to $CD$ through $S$. Prove that $p,q,s$ intersects at one point.

2020 Saint Petersburg Mathematical Olympiad, 5.

Point $I_a$ is the $A$-excircle center of $\triangle ABC$ which is tangent to $BC$ at $X$. Let $A'$ be diametrically opposite point of $A$ with respect to the circumcircle of $\triangle ABC$. On the segments $I_aX, BA'$ and $CA'$ are chosen respectively points $Y,Z$ and $T$ such that $I_aY=BZ=CT=r$ where $r$ is the inradius of $\triangle ABC$. Prove that the points $X,Y,Z$ and $T$ are concyclic.

Ukraine Correspondence MO - geometry, 2010.7

An arbitrary point $D$ was marked on the median $BM$ of the triangle $ABC$. It is known that the point $DE\parallel AB$ and $CE \parallel BM$. Prove that $BE = AD$

1993 AMC 12/AHSME, 13

A square of perimeter $20$ is inscribed in a square of perimeter $28$. What is the greatest distance between a vertex of the inner square and a vertex of the outer square? $ \textbf{(A)}\ \sqrt{58} \qquad\textbf{(B)}\ \frac{7\sqrt{5}}{2} \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ \sqrt{65} \qquad\textbf{(E)}\ 5\sqrt{3} $

2014 Polish MO Finals, 3

In an acute triangle $ABC$ point $D$ is the point of intersection of altitude $h_a$ and side $BC$, and points $M, N$ are orthogonal projections of point $D$ on sides $AB$ and $AC$. Lines $MN$ and $AD$ cross the circumcircle of triangle $ABC$ at points $P, Q$ and $A, R$. Prove that point $D$ is the center of the incircle of $PQR$.

2015 Turkey EGMO TST, 2

Tags: geometry
Let $D$ be the midpoint of the side $BC$ of a triangle $ABC$ and $P$ be a point inside the $ABD$ satisfying $\angle PAD=90^\circ - \angle PBD=\angle CAD$. Prove that $\angle PQB=\angle BAC$, where $Q$ is the intersection point of the lines $PC$ and $AD$.

2014 NIMO Problems, 4

Points $A$, $B$, $C$, and $D$ lie on a circle such that chords $\overline{AC}$ and $\overline{BD}$ intersect at a point $E$ inside the circle. Suppose that $\angle ADE =\angle CBE = 75^\circ$, $BE=4$, and $DE=8$. The value of $AB^2$ can be written in the form $a+b\sqrt{c}$ for positive integers $a$, $b$, and $c$ such that $c$ is not divisible by the square of any prime. Find $a+b+c$. [i]Proposed by Tony Kim[/i]

Mid-Michigan MO, Grades 7-9, 2022

[b]p1.[/b] Find the unknown angle $a$ of the triangle inscribed in the square. [img]https://cdn.artofproblemsolving.com/attachments/b/1/4aab5079dea41637f2fa22851984f886f034df.png[/img] [b]p2.[/b] Draw a polygon in the plane and a point outside of it with the following property: no edge of the polygon is completely visible from that point (in other words, the view is obstructed by some other edge). [b]p3.[/b] This problem has two parts. In each part, $2022$ real numbers are given, with some additional property. (a) Suppose that the sum of any three of the given numbers is an integer. Show that the total sum of the $2022$ numbers is also an integer. (b) Suppose that the sum of any five of the given numbers is an integer. Show that 5 times the total sum of the $2022$ numbers is also an integer, but the sum itself is not necessarily an integer. [b]p4.[/b] Replace stars with digits so that the long multiplication in the example below is correct. [img]https://cdn.artofproblemsolving.com/attachments/9/7/229315886b5f122dc0675f6d578624e83fc4e0.png[/img] [b]p5.[/b] Five nodes of a square grid paper are marked (called marked points). Show that there are at least two marked points such that the middle point of the interval connecting them is also a node of the square grid paper [b]p6.[/b] Solve the system $$\begin{cases} \dfrac{xy}{x+y}=\dfrac{8}{3} \\ \dfrac{yz}{y+z}=\dfrac{12}{5} \\\dfrac{xz}{x+z}=\dfrac{24}{7} \end{cases}$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 Switzerland Team Selection Test, 5

Tags: geometry
Let $ABC$ be a triangle. The points $K, L,$ and $M$ lie on the segments $BC, CA,$ and $AB,$ respectively, such that the lines $AK, BL,$ and $CM$ intersect in a common point. Prove that it is possible to choose two of the triangles $ALM, BMK,$ and $CKL$ whose inradii sum up to at least the inradius of the triangle $ABC$. [i]Proposed by Estonia[/i]

1958 February Putnam, A2

Two uniform solid spheres of equal radii are so placed that one is directly above the other. The bottom sphere is fixed, and the top sphere, initially at rest, rolls off. At what point will contact between the two spheres be "lost"? Assume the coefficient of friction is such that no slipping occurs.