Found problems: 25757
2019 ELMO Shortlist, G3
Let $\triangle ABC$ be an acute triangle with incenter $I$ and circumcenter $O$. The incircle touches sides $BC,CA,$ and $AB$ at $D,E,$ and $F$ respectively, and $A'$ is the reflection of $A$ over $O$. The circumcircles of $ABC$ and $A'EF$ meet at $G$, and the circumcircles of $AMG$ and $A'EF$ meet at a point $H\neq G$, where $M$ is the midpoint of $EF$. Prove that if $GH$ and $EF$ meet at $T$, then $DT\perp EF$.
[i]Proposed by Ankit Bisain[/i]
PEN H Problems, 27
Prove that there exist infinitely many positive integers $n$ such that $p=nr$, where $p$ and $r$ are respectively the semi-perimeter and the inradius of a triangle with integer side lengths.
Kettering MO, 2019
[b]p1.[/b] At $8$ AM Black Widow and Hawkeye began to move towards each other from two cities. They were planning to meet at the midpoint between two cities, but because Black Widow was driving $100$ mi/h faster than Hawkeye, they met at the point that is located $120$ miles from the midpoint. When they met Black Widow said ”If I knew that you drive so slow I would have started one hour later, and then we would have met exactly at the midpoint”. Find the distance between cities.
[b]p2.[/b] Solve the inequality: $\frac{x-1}{x-2} \le \frac{x-2}{x-1}$.
[b]p3.[/b] Solve the equation: $(x - y - z)^2 + (2x - 3y + 2z + 4)^2 + (x + y + z - 8)^2 = 0$.
[b]p4.[/b] Three camps are located in the vertices of an equilateral triangle. The roads connecting camps are along the sides of the triangle. Captain America is inside the triangle and he needs to know the distances between camps. Being able to see the roads he has found that the sum of the shortest distances from his location to the roads is $50$ miles. Can you help Captain America to evaluate the distances between the camps.
[b]p5.[/b] $N$ regions are located in the plane, every pair of them have a nonempty overlap. Each region is a connected set, that means every two points inside the region can be connected by a curve all points of which belong to the region. Iron Man has one charge remaining to make a laser shot. Is it possible for him to make the shot that goes through all $N$ regions?
[b]p6.[/b] Numbers $1, 2, . . . , 100$ are randomly divided in two groups $50$ numbers in each. In the first group the numbers are written in increasing order and denoted $a_1$, $a_2$, $...$ , $a_{50}$. In the second group the numbers are written in decreasing order and denoted $b_1$, $b_2$, $...$, $b_{50}$. Thus, $a_1 < a_2 < ... < a_{50}$ and $b_1 > b2_ > ... > b_{50}$. Evaluate $|a_1 - b_1| + |a_2 - b_2| + ... + |a_{50} - b_{50}|$.
PS. You should use hide for answers.
2020 USA TSTST, 6
Let $A$, $B$, $C$, $D$ be four points such that no three are collinear and $D$ is not the orthocenter of $ABC$. Let $P$, $Q$, $R$ be the orthocenters of $\triangle BCD$, $\triangle CAD$, $\triangle ABD$, respectively. Suppose that the lines $AP$, $BQ$, $CR$ are pairwise distinct and are concurrent. Show that the four points $A$, $B$, $C$, $D$ lie on a circle.
[i]Andrew Gu[/i]
2024 Oral Moscow Geometry Olympiad, 5
From point $D$ of parallelogram $ABCD$ were drawn an arbitrary line $\ell_1$, intersecting the segment $AB$ and the line $BC$ at points $C_1$ and $A_1$, respectively, and an arbitrary line $\ell_2$ intersecting the segment $BC$ and the line $AB$ at the points $A_2$ and $C_2$, respectively. Find the locus of the intersection points of the circles $(A_1BC_2)$ and $(A_2BC_1)$ (other than point $B$).
2017 Yasinsky Geometry Olympiad, 1
In the isosceles trapezoid with the area of $28$, a circle of radius $2$ is inscribed. Find the length of the side of the trapezoid.
2013 Indonesia Juniors, day 2
p1. Is there any natural number n such that $n^2 + 5n + 1$ is divisible by $49$ ? Explain.
p2. It is known that the parabola $y = ax^2 + bx + c$ passes through the points $(-3,4)$ and $(3,16)$, and does not
cut the $x$-axis. Find all possible abscissa values for the vertex point of the parabola.
p3. It is known that $T.ABC$ is a regular triangular pyramid with side lengths of $2$ cm. The points $P, Q, R$, and $S$ are the centroids of triangles $ABC$, $TAB$, $TBC$ and $TCA$, respectively . Determine the volume of the triangular pyramid $P.QRS$ .
p4. At an event invited $13$ special guests consisting of $ 8$ people men and $5$ women. Especially for all those special guests provided $13$ seats in a special row. If it is not expected two women sitting next to each other, determine the number of sitting positions possible for all those special guests.
p5. A table of size $n$ rows and $n$ columns will be filled with numbers $ 1$ or $-1$ so that the product of all the numbers in each row and the product of all the numbers in each column is $-1$. How many different ways to fill the table?
2016 ASMT, 4
Let $ABCD$ be a convex quadrilateral with $BA = BC$ and $DA = DC$. Let $E$ and $F$ be the midpoints of $BC$ and $CD$ respectively, and let$ BF$ and $DE$ intersect at $G$. If the area of $CEGF$ is $50$, what is the area of $ABGD$?
2016 AMC 12/AHSME, 21
A quadrilateral is inscribed in a circle of radius $200\sqrt{2}$. Three of the sides of this quadrilateral have length $200$. What is the length of the fourth side?
$\textbf{(A) } 200 \qquad\textbf{(B) } 200\sqrt{2} \qquad\textbf{(C) } 200\sqrt{3} \qquad\textbf{(D) } 300\sqrt{2} \qquad\textbf{(E) } 500$
Today's calculation of integrals, 868
In the coordinate space, define a square $S$, defined by the inequality $|x|\leq 1,\ |y|\leq 1$ on the $xy$-plane, with four vertices $A(-1,\ 1,\ 0),\ B(1,\ 1,\ 0),\ C(1,-1,\ 0), D(-1,-1,\ 0)$. Let $V_1$ be the solid by a rotation of the square $S$ about the line $BD$ as the axis of rotation, and let $V_2$ be the solid by a rotation of the square $S$ about the line $AC$ as the axis of rotation.
(1) For a real number $t$ such that $0\leq t<1$, find the area of cross section of $V_1$ cut by the plane $x=t$.
(2) Find the volume of the common part of $V_1$ and $V_2$.
2012 Brazil Team Selection Test, 1
Let $ P $ be a point in the interior of a triangle $ ABC $, and let $ D, E, F $ be the point of intersection of the line $ AP $ and the side $ BC $ of the triangle, of the line $ BP $ and the side $ CA $, and of the line $ CP $ and the side $ AB $, respectively. Prove that the area of the triangle $ ABC $ must be $ 6 $ if the area of each of the triangles $ PFA, PDB $ and $ PEC $ is $ 1 $.
2007 South africa National Olympiad, 3
In acute-angled triangle $ ABC$, the points $ D,E,F$ are on sides $ BC,CA,AB$, respectively such that $ \angle AFE \equal{} \angle BFD, \angle FDB \equal{} \angle EDC, \angle DEC \equal{} \angle FEA$. Prove that $ AD$ is perpendicular to $ BC$.
2014 Contests, 1
Points $M$, $N$, $K$ lie on the sides $BC$, $CA$, $AB$ of a triangle $ABC$, respectively, and are different from its vertices. The triangle $MNK$ is called[i] beautiful[/i] if $\angle BAC=\angle KMN$ and $\angle ABC=\angle KNM$. If in the triangle $ABC$ there are two beautiful triangles with a common vertex, prove that the triangle $ABC$ is right-angled.
[i]Proposed by Nairi M. Sedrakyan, Armenia[/i]
2012 Today's Calculation Of Integral, 817
Define two functions $f(t)=\frac 12\left(t+\frac{1}{t}\right),\ g(t)=t^2-2\ln t$. When real number $t$ moves in the range of $t>0$, denote by $C$ the curve by which the point $(f(t),\ g(t))$ draws on the $xy$-plane.
Let $a>1$, find the area of the part bounded by the line $x=\frac 12\left(a+\frac{1}{a}\right)$ and the curve $C$.
2020 Romanian Master of Mathematics Shortlist, G3
In the triangle $ABC$ with circumcircle $\Gamma$, the incircle $\omega$ touches sides $BC, CA$, and $AB$ at $D, E$, and $F$, respectively. The line through $D$ perpendicular to $EF$ meets $\omega$ at $K\neq D$. Line $AK$ meets $\Gamma$ at $L\neq A$. Rays $KI$ and $IL$ meet the circumcircle of triangle $BIC$ at $Q\neq I$ and $P\neq I$, respectively. The circumcircles of triangles $KFB$ and $KEC$ meet $EF$ at $R\neq F$ and $S\neq E$, respectively. Prove that $PQRS$ is cyclic.
[i]India, Anant Mugdal[/i]
1997 Turkey MO (2nd round), 2
In a triangle $ABC$, the inner and outer bisectors of the $\angle A$ meet the line $BC$ at $D$ and $E$, respectively. Let $d$ be a common tangent of the circumcircle $(O)$ of $\triangle ABC$ and the circle with diameter $DE$ and center $F$. The projections of the tangency points onto $FO$ are denoted by $P$ and $Q$, and the length of their common chord is denoted by $m$. Prove that $PQ = m$
2000 Brazil Team Selection Test, Problem 1
Show that if the sides $a, b, c$ of a triangle satisfy the equation
\[2(ab^2 + bc^2 + ca^2) = a^2b + b^2c + c^2a + 3abc,\]
then the triangle is equilateral. Show also that the equation can be satisfied by positive real numbers that are not the sides of a triangle.
2019 Sharygin Geometry Olympiad, 18
A quadrilateral $ABCD$ without parallel sidelines is circumscribed around a circle centered at $I$. Let $K, L, M$ and $N$ be the midpoints of $AB, BC, CD$ and $DA$ respectively. It is known that $AB \cdot CD = 4IK \cdot IM$. Prove that $BC \cdot AD = 4IL \cdot IN$.
2016 VJIMC, 3
Let $d \geq 3$ and let $A_1 \dots A_{d + 1}$ be a simplex in $\mathbb{R}^d$. (A simplex is the convex hull of $d + 1$ points not lying in a common hyperplane.) For every $i = 1, \dots , d + 1$ let $O_i$ be the circumcentre of the face $A_1 \dots A_{i - 1}A_{i+1}\dots A_{d+1}$, i.e. $O_i$ lies in the hyperplane $A_1 \dots A_{i - 1}A_{i+1}\dots A_{d+1}$ and it has the same distance from all points $A_1, \dots , A_{i-1}, A_{i+1}, \dots , A_{d+1}$. For each $i$ draw a line through $A_i$ perpendicular to the hyperplane $O_1 \dots O_{i-1}O_{i+1} \dots O_{d+1}$. Prove that either these lines are parallel or they have a common point.
2014 IPhOO, 10
An electric field varies according the the relationship, \[ \textbf{E} = \left( 0.57 \, \dfrac{\text{N}}{\text{C}} \right) \cdot \sin \left[ \left( 1720 \, \text{s}^{-1} \right) \cdot t \right]. \]Find the maximum displacement current through a $ 1.0 \, \text{m}^2 $ area perpendicular to $\vec{\mathbf{E}}$. Assume the permittivity of free space to be $ 8.85 \times 10^{-12} \, \text{F}/\text{m} $. Round to two significant figures.
[i]Problem proposed by Kimberly Geddes[/i]
2017 CMIMC Geometry, 4
Let $\mathcal S$ be the sphere with center $(0,0,1)$ and radius $1$ in $\mathbb R^3$. A plane $\mathcal P$ is tangent to $\mathcal S$ at the point $(x_0,y_0,z_0)$, where $x_0$, $y_0$, and $z_0$ are all positive. Suppose the intersection of plane $\mathcal P$ with the $xy$-plane is the line with equation $2x+y=10$ in $xy$-space. What is $z_0$?
2023 Junior Balkan Team Selection Tests - Romania, P3
Let the equilateral triangles $ABC$ and $DEF$ be congruent with the centers $O_1$, respectively $O_2$, so that segment $AB$ intersects segments $DE$ and $DF$ at $M, N$, and the segment $AC$ intersects the segments $DF$ and $EF$ at $P$ and $Q$, respectively. We denote by $I$ the intersection point of the bisectors of the angles $EMN$ and $DPQ$ and by $J$ the intersection of the bisectors of the angles $FNM$ and $EQP$. Prove that $IJ$ is the perpendicular bisector of the segment $O_1O_2$.
2020-21 IOQM India, 23
The incircle $\Gamma$ of a scalene triangle $ABC$ touches $BC$ at $D, CA$ at $E$ and $AB$ at $F$. Let $r_A$ be the radius of the circle inside $ABC$ which is tangent to $\Gamma$ and the sides $AB$ and $AC$. Define $r_B$ and $r_C$ similarly. If $r_A = 16, r_B = 25$ and $r_C = 36$, determine the radius of $\Gamma$.
2002 Tournament Of Towns, 5
Does there exist a regular triangular prism that can be covered (without overlapping) by different equilateral triangles? (One is allowed to bend the triangles around the edges of the prism.)
2012 Indonesia TST, 3
Let $P_1P_2\ldots P_n$ be an $n$-gon such that for all $i,j \in \{1,2,\ldots,n\}$ where $i \neq j$, there exists $k \neq i,j$ such that $\angle P_iP_kP_j = 60^\circ$. Prove that $n=3$.