Found problems: 25757
2025 Sharygin Geometry Olympiad, 16
The Feuerbach point of a scalene triangle lies on one of its bisectors. Prove that it bisects the segment between the corresponding vertex and the incenter.
Proposed by: A.Zaslavsky
1972 Vietnam National Olympiad, 4
Let $ABCD$ be a regular tetrahedron with side $a$. Take $E,E'$ on the edge $AB, F, F'$ on the edge $AC$ and $G,G'$ on the edge AD so that $AE =a/6,AE' = 5a/6,AF= a/4,AF'= 3a/4,AG = a/3,AG'= 2a/3$. Compute the volume of $EFGE'F'G'$ in term of $a$ and find the angles between the lines $AB,AC,AD$ and the plane $EFG$.
2023 Bundeswettbewerb Mathematik, 3
Let $ABC$ be a triangle with incenter $I$. Let $M_b$ and $M_a$ be the midpoints of $AC$ and $BC$, respectively. Let $B'$ be the point of intersection of lines $M_bI$ and $BC$, and let $A'$ be the point of intersection of lines $M_aI$ and $AC$.
If triangles $ABC$ and $A'B'C$ have the same area, what are the possible values of $\angle ACB$?
2018 Math Hour Olympiad, 6-7
[u]Round 1[/u]
[b]p1.[/b] Alice and Bob played $25$ games of rock-paper-scissors. Alice played rock $12$ times, scissors $6$ times, and paper $7$ times. Bob played rock $13$ times, scissors $9$ times, and paper $3$ times. If there were no ties, who won the most games?
(Remember, in each game each player picks one of rock, paper, or scissors. Rock beats scissors, scissors beat paper, and paper beats rock. If they choose the same object, the result is a tie.)
[b]p2.[/b] On the planet Vulcan there are eight big volcanoes and six small volcanoes. Big volcanoes erupt every three years and small volcanoes erupt every two years. In the past five years, there were $30$ eruptions. How many volcanoes could erupt this year?
[b]p3.[/b] A tangle is a sequence of digits constructed by picking a number $N\ge 0$ and writing the integers from $0$ to $N$ in some order, with no spaces. For example, $010123459876$ is a tangle with $N = 10$. A palindromic sequence reads the same forward or backward, such as $878$ or $6226$. The shortest palindromic tangle is $0$. How long is the second-shortest palindromic tangle?
[b]p4.[/b] Balls numbered $1$ to $N$ have been randomly arranged in a long input tube that feeds into the upper left square of an $8 \times 8$ board. An empty exit tube leads out of the lower right square of the board. Your goal is to arrange the balls in order from $1$ to $N$ in the exit tube. As a move, you may
1. move the next ball in line from the input tube into the upper left square of the board,
2. move a ball already on the board to an adjacent square to its right or below, or
3. move a ball from the lower right square into the exit tube.
No square may ever hold more than one ball. What is the largest number $N$ for which you can achieve your goal, no matter how the balls are initially arranged? You can see the order of the balls in the input tube before you start.
[img]https://cdn.artofproblemsolving.com/attachments/1/8/bbce92750b01052db82d58b96584a36fb5ca5b.png[/img]
[b]p5.[/b] A $2018 \times 2018$ board is covered by non-overlapping $2 \times 1$ dominoes, with each domino covering two squares of the board. From a given square, a robot takes one step to the other square of the domino it is on and then takes one more step in the same direction. Could the robot continue moving this way forever without falling off the board?
[img]https://cdn.artofproblemsolving.com/attachments/9/c/da86ca4ff0300eca8e625dff891ed1769d44a8.png[/img]
[u]Round 2[/u]
[b]p6.[/b] Seventeen teams participated in a soccer tournament where a win is worth $1$ point, a tie is worth $0$ points, and a loss is worth $-1$ point. Each team played each other team exactly once. At least $\frac34$ of all games ended in a tie. Show that there must be two teams with the same number of points at the end of the tournament.
[b]p7.[/b] The city of Old Haven is known for having a large number of secret societies. Any person may be a member of multiple societies. A secret society is called influential if its membership includes at least half the population of Old Haven. Today, there are $2018$ influential secret societies. Show that it is possible to form a council of at most $11$ people such that each influential secret society has at least one member on the council.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2004 Bosnia and Herzegovina Junior BMO TST, 2
A rectangle is divided into $9$ smaller rectangles. The area of four of them is $5, 3, 9$ and $2$, as in the picture below.
(The picture is not at scale.)
[img]https://cdn.artofproblemsolving.com/attachments/8/e/0ccd6f41073f776b62e9ef4522df1f1639ee31.png[/img]
Determine the minimum area of the rectangle. Under what circumstances is it achieved?
1978 IMO Shortlist, 2
Two identically oriented equilateral triangles, $ABC$ with center $S$ and $A'B'C$, are given in the plane. We also have $A' \neq S$ and $B' \neq S$. If $M$ is the midpoint of $A'B$ and $N$ the midpoint of $AB'$, prove that the triangles $SB'M$ and $SA'N$ are similar.
1993 Iran MO (2nd round), 2
Show that if $D_1$ and $D_2$ are two skew lines, then there are infinitely many straight lines such that their points have equal distance from $D_1$ and $D_2.$
2018 Baltic Way, 13
The bisector of the angle $A$ of a triangle $ABC$ intersects $BC$ in a point $D$ and intersects the circumcircle of the triangle $ABC$ in a point $E$. Let $K,L,M$ and $N$ be the midpoints of the segments $AB,BD,CD$ and $AC$, respectively. Let $P$ be the circumcenter of the triangle $EKL$, and $Q$ be the circumcenter of the triangle $EMN$. Prove that $\angle PEQ=\angle BAC$.
2003 China Team Selection Test, 1
Let $ ABCD$ be a quadrilateral which has an incircle centered at $ O$. Prove that
\[ OA\cdot OC\plus{}OB\cdot OD\equal{}\sqrt{AB\cdot BC\cdot CD\cdot DA}\]
2004 Purple Comet Problems, 20
A circle with area $40$ is tangent to a circle with area $10$. Let R be the smallest rectangle containing both circles. The area of $R$ is $\frac{n}{\pi}$. Find $n$.
[asy]
defaultpen(linewidth(0.7)); size(120);
real R = sqrt(40/pi), r = sqrt(10/pi);
draw(circle((0,0), R)); draw(circle((R+r,0), r));
draw((-R,-R)--(-R,R)--(R+2*r,R)--(R+2*r,-R)--cycle);[/asy]
2023 India EGMO TST, P6
Let $ABC$ be an isosceles triangle with $AB = AC$. Suppose $P,Q,R$ are points on segments $AC, AB, BC$ respectively such that $AP = QB$, $\angle PBC = 90^\circ - \angle BAC$ and $RP = RQ$. Let $O_1, O_2$ be the circumcenters of $\triangle APQ$ and $\triangle CRP$. Prove that $BR = O_1O_2$.
[i]Proposed by Atul Shatavart Nadig[/i]
1962 Leningrad Math Olympiad, grade 6
[b]6.1 [/b] Three people with one double seater motorbike simultaneously headed from city A to city B . How should they act so that time, for which the last of them will get to , was the smallest? Determine this time. Pedestrian speed - 5 km/h, motorcycle speed - 45 km/h, distance from A to B is equal to 60 kilometers .
[b]6.2 / 7.2[/b] The numbers $A$ and $B$ are relatively prime. What common divisors can have the numbers $A+B$ and $A-B$?
[b]6.3.[/b] A person's age in $1962$ was one more than the sum of digits of the year of his birth. How old is he?
[b]6.4. / 7.3[/b] $15$ magazines lie on the table, completely covering it. Prove that it is possible to remove eight of them so that the remaining magz cover at least $7/15$ of the table area.
[b]6.5.[/b] Prove that a $201 \times 201$ chessboard can be bypassed by moving a chess knight, visiting each square exactly once.
[b]6.6.[/b] Can an integer whose last two digits are odd be the square of another integer?
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3983459_1962_leningrad_math_olympiad]here[/url].
2018 German National Olympiad, 2
We are given a tetrahedron with two edges of length $a$ and the remaining four edges of length $b$ where $a$ and $b$ are positive real numbers. What is the range of possible values for the ratio $v=a/b$?
2008 AIME Problems, 13
A regular hexagon with center at the origin in the complex plane has opposite pairs of sides one unit apart. One pair of sides is parallel to the imaginary axis. Let $ R$ be the region outside the hexagon, and let $ S\equal{}\{\frac{1}{z}|z\in R\}$. Then the area of $ S$ has the form $ a\pi\plus{}\sqrt{b}$, where $ a$ and $ b$ are positive integers. Find $ a\plus{}b$.
DMM Individual Rounds, 2017 Tie
[b]p1.[/b] Find the sum of all $3$-digit positive integers $\overline{abc}$ that satisfy $$\overline{abc} = {n \choose a}+{n \choose b}+ {n \choose c}$$ for some $n \le 10$.
[b]p2.[/b] Feng and Trung play a game. Feng chooses an integer $p$ from $1$ to $90$, and Trung tries to guess it. In each round, Trung asks Feng two yes-or-no questions about $p$. Feng must answer one question truthfully and one question untruthfully. After $15$ rounds, Trung concludes there are n possible values for $p$. What is the least possible value of $n$, assuming Feng chooses the best strategy to prevent Trung from guessing correctly?
[b]p3.[/b] A hypercube $H_n$ is an $n$-dimensional analogue of a cube. Its vertices are all the points $(x_1, .., x_n)$ that satisfy $x_i = 0$ or $1$ for all $1 \le i \le n$ and its edges are all segments that connect two adjacent vertices. (Two vertices are adjacent if their coordinates differ at exactly one $x_i$ . For example, $(0,0,0,0)$ and $(0,0,0,1)$ are adjacent on $H_4$.) Let $\phi (H_n)$ be the number of cubes formed by the edges and vertices of $H_n$. Find $\phi (H_4) + \phi (H_5)$.
[b]p4.[/b] Denote the legs of a right triangle as $a$ and $b$, the radius of the circumscribed circle as $R$ and the radius of the inscribed circle as $r$. Find $\frac{a+b}{R+r}$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1974 IMO Longlists, 46
Outside an arbitrary triangle $ABC$, triangles $ADB$ and $BCE$ are constructed such that $\angle ADB=\angle BEC=90^{\circ}$ and $\angle DAB=\angle EBC=30^{\circ}$. On the segment $AC$ the point $F$ with $AF=3FC$ is chosen. Prove that $\angle DFE=90^{\circ}$ and $\angle FDE=30^{\circ}$.
1990 ITAMO, 2
In a triangle $ABC$, the bisectors of the angles at $B$ and $A$ meet the opposite sides at $P$ and $Q$, respectively. Suppose that the circumcircle of triangle $PQC$ passes through the incenter $R $ of $\vartriangle ABC$. Given that $PQ = l$, find all sides of triangle $PQR$.
2009 China Girls Math Olympiad, 2
Right triangle $ ABC,$ with $ \angle A\equal{}90^{\circ},$ is inscribed in circle $ \Gamma.$ Point $ E$ lies on the interior of arc $ {BC}$ (not containing $ A$) with $ EA>EC.$ Point $ F$ lies on ray $ EC$ with $ \angle EAC \equal{} \angle CAF.$ Segment $ BF$ meets $ \Gamma$ again at $ D$ (other than $ B$). Let $ O$ denote the circumcenter of triangle $ DEF.$ Prove that $ A,C,O$ are collinear.
1994 Moldova Team Selection Test, 6
Inside the triangle $DD_1D_3$ the cevian $DD_2$ is constructed. Perpendiculars from $D_1, D_2$ and $D_3$ to lines $DD_1, DD_2$ and $DD_3$, respectively, intersect in points $A,B$ and $C$ such that $AB\perp DD_1, AC\perp DD_2, BC\perp DD_3$. Prove that $\frac{AC}{DD_2}=\frac{AB}{DD_1}+\frac{BC}{DD_3}$.
2015 Oral Moscow Geometry Olympiad, 5
A triangle $ABC$ and spheres are given in space $S_1$ and $S_2$, each of which passes through points $A, B$ and $C$. For points $M$ spheres $S_1$ not lying in the plane of triangle $ABC$ are drawn lines $MA, MB$ and $MC$, intersecting the sphere $S_2$ for the second time at points $A_1,B_1$ and $C_1$, respectively. Prove that the planes passing through points $A_1, B_1$ and $C_1$, touch a fixed sphere or pass through a fixed point.
1989 Romania Team Selection Test, 4
Let $A,B,C$ be variable points on edges $OX,OY,OZ$ of a trihedral angle $OXYZ$, respectively.
Let $OA = a, OB = b, OC = c$ and $R$ be the radius of the circumsphere $S$ of $OABC$.
Prove that if points $A,B,C$ vary so that $a+b+c = R+l$, then the sphere $S$ remains tangent to a fixed sphere.
2023 Indonesia TST, 1
In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$.
Prove that $B, C, X,$ and $Y$ are concyclic.
2010 AIME Problems, 8
For a real number $ a$, let $ \lfloor a \rfloor$ denominate the greatest integer less than or equal to $ a$. Let $ \mathcal{R}$ denote the region in the coordinate plane consisting of points $ (x,y)$ such that \[\lfloor x \rfloor ^2 \plus{} \lfloor y \rfloor ^2 \equal{} 25.\] The region $ \mathcal{R}$ is completely contained in a disk of radius $ r$ (a disk is the union of a circle and its interior). The minimum value of $ r$ can be written as $ \tfrac {\sqrt {m}}{n}$, where $ m$ and $ n$ are integers and $ m$ is not divisible by the square of any prime. Find $ m \plus{} n$.
2009 Oral Moscow Geometry Olympiad, 2
A square and a rectangle of the same perimeter have a common corner. Prove that the intersection point of the diagonals of the rectangle lies on the diagonal of the square.
(Yu. Blinkov)
2014 All-Russian Olympiad, 2
Let $M$ be the midpoint of the side $AC$ of $ \triangle ABC$. Let $P\in AM$ and $Q\in CM$ be such that $PQ=\frac{AC}{2}$. Let $(ABQ)$ intersect with $BC$ at $X\not= B$ and $(BCP)$ intersect with $BA$ at $Y\not= B$. Prove that the quadrilateral $BXMY$ is cyclic.
[i]F. Ivlev, F. Nilov[/i]