Found problems: 25757
2007 Romania Team Selection Test, 4
Let $\mathcal O_{1}$ and $\mathcal O_{2}$ two exterior circles. Let $A$, $B$, $C$ be points on $\mathcal O_{1}$ and $D$, $E$, $F$ points on $\mathcal O_{1}$ such that $AD$ and $BE$ are the common exterior tangents to these two circles and $CF$ is one of the interior tangents to these two circles, and such that $C$, $F$ are in the interior of the quadrilateral $ABED$. If $CO_{1}\cap AB=\{M\}$ and $FO_{2}\cap DE=\{N\}$ then prove that $MN$ passes through the middle of $CF$.
2013 Mediterranean Mathematics Olympiad, 4
$ABCD$ is quadrilateral inscribed in a circle $\Gamma$ .Lines $AB$ and $CD$ intersect at $E$ and lines$AD$ and $BC$ intersect at $F$.
Prove that the circle with diameter $EF$ and circle $\Gamma$ are orthogonal.
2017 India PRMO, 26
Let $AB$ and $CD$ be two parallel chords in a circle with radius $5$ such that the centre $O$ lies between these chords. Suppose $AB = 6, CD = 8$. Suppose further that the area of the part of the circle lying between the chords $AB$ and $CD$ is $(m\pi + n) / k$, where $m, n, k$ are positive integers with gcd$(m, n, k) = 1$. What is the value of $m + n + k$ ?
1991 APMO, 2
Suppose there are $997$ points given in a plane. If every two points are joined by a line segment with its midpoint coloured in red, show that there are at least $1991$ red points in the plane. Can you find a special case with exactly $1991$ red points?
2003 Italy TST, 2
Let $B\not= A$ be a point on the tangent to circle $S_1$ through the point $A$ on the circle. A point $C$ outside the circle is chosen so that segment $AC$ intersects the circle in two distinct points. Let $S_2$ be the circle tangent to $AC$ at $C$ and to $S_1$ at some point $D$, where $D$ and $B$ are on the opposite sides of the line $AC$. Let $O$ be the circumcentre of triangle $BCD$. Show that $O$ lies on the circumcircle of triangle $ABC$.
Geometry Mathley 2011-12, 11.4
Let $ABC$ be a triangle and $P$ be a point in the plane of the triangle. The lines $AP,BP, CP$ meets $BC,CA,AB$ at $A_1,B_1,C_1$, respectively. Let $A_2,B_2,C_2$ be the Miquel point of the complete quadrilaterals $AB_1PC_1BC$, $BC_1PA_1CA$, $CA_1PB_1AB$. Prove that the circumcircles of the triangles $APA_2$,$BPB_2$, $CPC_2$, $BA_2C$, $AB_2C$, $AC_2B$ have a point of concurrency.
Nguyễn Văn Linh
2006 India IMO Training Camp, 1
Let $ABC$ be a triangle and let $P$ be a point in the plane of $ABC$ that is inside the region of the angle $BAC$ but outside triangle $ABC$.
[b](a)[/b] Prove that any two of the following statements imply the third.
[list]
[b](i)[/b] the circumcentre of triangle $PBC$ lies on the ray $\stackrel{\to}{PA}$.
[b](ii)[/b] the circumcentre of triangle $CPA$ lies on the ray $\stackrel{\to}{PB}$.
[b](iii)[/b] the circumcentre of triangle $APB$ lies on the ray $\stackrel{\to}{PC}$.[/list]
[b](b)[/b] Prove that if the conditions in (a) hold, then the circumcentres of triangles $BPC,CPA$ and $APB$ lie on the circumcircle of triangle $ABC$.
2021 Science ON grade VI, 1
Triangle $ABC$ is such that $\angle BAC>\angle ABC>60^o$. The perpendicular bisector of $\overline{AB}$ intersects the segment $\overline {BC}$ at $O$. Suppose there exists a point $D$ on the segment $\overline{AC}$ such that $OD=AB$ and $\angle ODA=30^o$. Find $\angle BAC$.
[i](Vlad Robu)[/i]
2012 Princeton University Math Competition, A6
Consider a pool table with the shape of an equilateral triangle. A ball of negligible size is initially placed at the center of the table. After it has been hit, it will keep moving in the direction it was hit towards and bounce off any edges with perfect symmetry. If it eventually reaches the midpoint of any edge, we mark the midpoint of the entire route that the ball has travelled through. Repeating this experiment, how many points can we mark at most?
[img]https://cdn.artofproblemsolving.com/attachments/5/d/3ae7aad4271b9a417826f3bc8dd7b43aeca5d4.png[/img]
2020 Ukraine Team Selection Test, 3
Altitudes $AH1$ and $BH2$ of acute triangle $ABC$ intersect at $H$. Let $w1$ be the circle that goes through $H2$ and touches the line $BC$ at $H1$, and let $w2$ be the circle that goes through $H1$ and touches the line $AC$ at $H2$. Prove, that the intersection point of two other tangent lines $BX$ and $AY$( $X$ and $Y$ are different from $H1$ and $H2$) to circles $w1$ and $w2$ respectively, lies on the circumcircle of triangle $HXY$.
Proposed by [i]Danilo Khilko[/i]
2014 239 Open Mathematical Olympiad, 4
The median $CM$ of the triangle $ABC$ is equal to the bisector $BL$, also $\angle BAC=2\angle ACM$. prove that the triangle is right.
2002 Iran Team Selection Test, 4
$O$ is a point in triangle $ABC$. We draw perpendicular from $O$ to $BC,AC,AB$ which intersect $BC,AC,AB$ at $A_{1},B_{1},C_{1}$. Prove that $O$ is circumcenter of triangle $ABC$ iff perimeter of $ABC$ is not less than perimeter of triangles $AB_{1}C_{1},BC_{1}A_{1},CB_{1}A_{1}$.
2016 Junior Balkan Team Selection Test, 1
Let rightangled $\triangle ABC$ be given with right angle at vertex $C$. Let $D$ be foot of altitude from $C$ and let $k$ be circle that touches $BD$ at $E$, $CD$ at $F$ and circumcircle of $\triangle ABC$ at $G$.
$a.)$ Prove that points $A$, $F$ and $G$ are collinear.
$b.)$ Express radius of circle $k$ in terms of sides of $\triangle ABC$.
2023 JBMO Shortlist, G5
Let $D,E,F$ be the points of tangency of the incircle of a given triangle $ABC$ with sides $BC, CA, AB,$ respectively. Denote by $I$ the incenter of $ABC$, by $M$ the midpoint of $BC$ and by $G$ the foot of the perpendicular from $M$ to line $EF$. Prove that the line $ID$ is tangent to the circumcircle of the triangle $MGI$.
1991 APMO, 5
Given are two tangent circles and a point $P$ on their common tangent perpendicular to the lines joining their centres. Construct with ruler and compass all the circles that are tangent to these two circles and pass through the point $P$.
1963 AMC 12/AHSME, 18
Chord $EF$ is the perpendicular bisector of chord $BC$, intersecting it in $M$. Between $B$ and $M$ point $U$ is taken, and $EU$ extended meets the circle in $A$. Then, for any selection of $U$, as described, triangle $EUM$ is similar to triangle:
[asy]
pair B = (-0.866, -0.5);
pair C = (0.866, -0.5);
pair E = (0, -1);
pair F = (0, 1);
pair M = midpoint(B--C);
pair A = (-0.99, -0.141);
pair U = intersectionpoints(A--E, B--C)[0];
draw(B--C);
draw(F--E--A);
draw(unitcircle);
label("$B$", B, SW);
label("$C$", C, SE);
label("$A$", A, W);
label("$E$", E, S);
label("$U$", U, NE);
label("$M$", M, NE);
label("$F$", F, N);
//Credit to MSTang for the asymptote
[/asy]
$\textbf{(A)}\ EFA \qquad
\textbf{(B)}\ EFC \qquad
\textbf{(C)}\ ABM \qquad
\textbf{(D)}\ ABU \qquad
\textbf{(E)}\ FMC$
1994 India National Olympiad, 5
A circle passes through the vertex of a rectangle $ABCD$ and touches its sides $AB$ and $AD$ at $M$ and $N$ respectively. If the distance from $C$ to the line segment $MN$ is equal to $5$ units, find the area of rectangle $ABCD$.
2013 Romania Team Selection Test, 2
Let $\gamma$ a circle and $P$ a point who lies outside the circle. Two arbitrary lines $l$ and $l'$ which pass through $P$ intersect the circle at the points $X$, $Y$ , respectively $X'$, $Y'$ , such that $X$ lies between $P$ and $Y$ and $X'$ lies between $P$ and $Y'$. Prove that the line determined by the circumcentres of the triangles $PXY'$ and $PX'Y$ passes through a fixed point.
2016 Greece JBMO TST, 2
Let ${c\equiv c\left(O, R\right)}$ be a circle with center ${O}$ and radius ${R}$ and ${A, B}$ be two points on it, not belonging to the same diameter. The bisector of angle${\angle{ABO}}$ intersects the circle ${c}$ at point ${C}$, the circumcircle of the triangle $AOB$ , say ${c_1}$ at point ${K}$ and the circumcircle of the triangle $AOC$ , say ${{c}_{2}}$ at point ${L}$. Prove that point ${K}$ is the circumcircle of the triangle $AOC$ and that point ${L}$ is the incenter of the triangle $AOB$.
Evangelos Psychas (Greece)
2017 Mediterranean Mathematics Olympiad, Problem 1
Let $ABC$ be an equilateral triangle, and let $P$ be some point in its circumcircle.
Determine all positive integers $n$, for which the value of the sum
$S_n (P) = |PA|^n + |PB|^n + |PC|^n$ is independent of the choice of point $P$.
2020 Purple Comet Problems, 19
Right $\vartriangle ABC$ has side lengths $6, 8$, and $10$. Find the positive integer $n$ such that the area of the region inside the circumcircle but outside the incircle of $\vartriangle ABC$ is $n\pi$.
[img]https://cdn.artofproblemsolving.com/attachments/d/1/cb112332069c09a3b370343ca8a2ef21102fe2.png[/img]
2011 Morocco TST, 3
For a given triangle $ ABC$, let $ X$ be a variable point on the line $ BC$ such that $ C$ lies between $ B$ and $ X$ and the incircles of the triangles $ ABX$ and $ ACX$ intersect at two distinct points $ P$ and $ Q.$ Prove that the line $ PQ$ passes through a point independent of $ X$.
Geometry Mathley 2011-12, 4.3
Let $ABC$ be a triangle not being isosceles at $A$. Let $(O)$ and $(I)$ denote the circumcircle and incircle of the triangle. $(I)$ touches $AC$ and $AB$ at $E, F$ respectively. Points $M$ and $N$ are on the circle $(I)$ such that $EM \parallel FN \parallel BC$. Let $P,Q$ be the intersections of $BM,CN$ and $(I)$. Prove that
i) $BC,EP, FQ$ are concurrent, and denote by $K$ the point of concurrency.
ii) the circumcircles of triangle $BPK, CQK$ are all tangent to $(I)$ and all pass through a common point on the circle $(O)$.
Nguyễn Minh Hà
2007 China Team Selection Test, 1
Let convex quadrilateral $ ABCD$ be inscribed in a circle centers at $ O.$ The opposite sides $ BA,CD$ meet at $ H$, the diagonals $ AC,BD$ meet at $ G.$ Let $ O_{1},O_{2}$ be the circumcenters of triangles $ AGD,BGC.$ $ O_{1}O_{2}$ intersects $ OG$ at $ N.$ The line $ HG$ cuts the circumcircles of triangles $ AGD,BGC$ at $ P,Q$, respectively. Denote by $ M$ the midpoint of $ PQ.$ Prove that $ NO \equal{} NM.$
1967 Poland - Second Round, 5
On the plane are placed two triangles exterior to each other. Show that there always exists a line passing through two vertices of one triangle and separating the third vertex from all vertices of the other triangle.