Found problems: 25757
2014 AMC 10, 12
A regular hexagon has side length 6. Congruent arcs with radius 3 are drawn with the center at each of the vertices, creating circular sectors as shown. The region inside the hexagon but outside the sectors is shaded as shown What is the area of the shaded region?
[asy]
size(125);
defaultpen(linewidth(0.8));
path hexagon=(2*dir(0))--(2*dir(60))--(2*dir(120))--(2*dir(180))--(2*dir(240))--(2*dir(300))--cycle;
fill(hexagon,lightgrey);
for(int i=0;i<=5;i=i+1)
{
path arc=2*dir(60*i)--arc(2*dir(60*i),1,120+60*i,240+60*i)--cycle;
unfill(arc);
draw(arc);
}
draw(hexagon,linewidth(1.8));[/asy]
$ \textbf{(A)}\ 27\sqrt{3}-9\pi\qquad\textbf{(B)}\ 27\sqrt{3}-6\pi\qquad\textbf{(C)}\ 54\sqrt{3}-18\pi\qquad\textbf{(D)}\ 54\sqrt{3}-12\pi\qquad\textbf{(E)}\ 108\sqrt{3}-9\pi $
2008 SEEMOUS, Problem 2
Let $P_0,P_1,P_2,\ldots$ be a sequence of convex polygons such that, for each $k\ge0$, the vertices of $P_{k+1}$ are the midpoints of all sides of $P_k$. Prove that there exists a unique point lying inside all these polygons.
2012 Stars of Mathematics, 1
Let $\ell$ be a line in the plane, and a point $A \not \in \ell$. Determine the locus of the points $Q$ in the plane, for which there exists a point $P\in \ell$ so that $AQ=PQ$ and $\angle PAQ = 45^{\circ}$.
([i]Dan Schwarz[/i])
2024 ISI Entrance UGB, P3
Let $ABCD$ be a quadrilateral with all the internal angles $< \pi$. Squares are drawn on each side as shown in the picture below. Let $\Delta_1 , \Delta_2 , \Delta_3 , \Delta_4$ denote the areas of the shaded triangles as shown. Prove that \[\Delta_1 - \Delta_2 + \Delta_3 - \Delta_4 = 0.\]
[asy]
//made from sweat and hardwork by SatisfiedMagma
import olympiad;
import geometry;
size(250);
pair A = (-3,0);
pair B = (0,2);
pair C = (5.88,0.44);
pair D = (0.96, -1.86);
pair H = B + rotate(90)*(C-B);
pair G = C + rotate(270)*(B-C);
pair J = C + rotate(90)*(D-C);
pair I = D + rotate(270)*(C-D);
pair L = D + rotate(90)*(A-D);
pair K = A + rotate(270)*(D-A);
pair F = A + rotate(90)*(B-A);
pair E = B + rotate(270)*(A-B);
draw(B--H--G--C--B, blue);
draw(C--J--I--D--C, red);
draw(B--E--F--A--B, orange);
draw(D--L--K--A--D, magenta);
draw(L--I, fuchsia); draw(J--G, fuchsia); draw(E--H, fuchsia); draw(F--K, fuchsia);
pen lightFuchsia = deepgreen + 0.5*white;
fill(D--L--I--cycle, lightFuchsia);
fill(A--K--F--cycle, lightFuchsia);
fill(E--B--H--cycle, lightFuchsia);
fill(C--J--G--cycle, lightFuchsia);
label("$\triangle_2$", (E+B+H)/3);
label("$\triangle_4$", (D+L+I)/3);
label("$\triangle_3$", (C+G+J)/3);
label("$\triangle_1$", (A+F+K)/3);
dot("$A$", A, S);
dot("$B$", B, S);
dot("$C$", C, S);
dot("$D$", D, N);
dot("$H$", H, dir(H));
dot("$G$", G, dir(G));
dot("$J$", J, dir(J));
dot("$I$", I, dir(I));
dot("$L$", L, dir(L));
dot("$K$", K, dir(K));
dot("$F$", F, dir(F));
dot("$E$", E, dir(E));
[/asy]
2009 ISI B.Math Entrance Exam, 7
Compute the maximum area of a rectangle which can be inscribed in a triangle of area $M$.
2003 AMC 12-AHSME, 13
An ice cream cone consists of a sphere of vanilla ice cream and a right circular cone that has the same diameter as the sphere. If the ice cream melts, it will exactly fill the cone. Assume that the melted ice cream occupies $ 75\%$ of the volume of the frozen ice cream. What is the ratio of the cone’s height to its radius?
$ \textbf{(A)}\ 2: 1 \qquad
\textbf{(B)}\ 3: 1 \qquad
\textbf{(C)}\ 4: 1 \qquad
\textbf{(D)}\ 16: 3 \qquad
\textbf{(E)}\ 6: 1$
2023 Indonesia TST, G
Given an acute triangle $ABC$ with circumcenter $O$. The circumcircle of $BCH$ and a circle with diameter of $AC$ intersect at $P (P \neq C)$. A point $Q$ on segment of $PC$ such that $PB = PQ$. Prove that $\angle ABC = \angle AQP$
2015 Indonesia MO, 3
Given an acute triangle $ABC$. $\Gamma _{B}$ is a circle that passes through $AB$, tangent to $AC$ at $A$ and centered at $O_{B}$. Define $\Gamma_C$ and $O_C$ the same way. Let the altitudes of $\triangle ABC$ from $B$ and $C$ meets the circumcircle of $\triangle ABC$ at $X$ and $Y$, respectively. Prove that $A$, the midpoint of $XY$ and the midpoint of $O_{B}O_{C}$ is collinear.
2010 Math Prize For Girls Problems, 14
In the figure below, the three small circles are congruent and tangent to each other. The large circle is tangent to the three small circles.
[asy]
import graph;
unitsize(20);
real r = sqrt(3) / 2;
filldraw(Circle((0, 0), 1 + r), gray);
filldraw(Circle(dir(90), r), white);
filldraw(Circle(dir(210), r), white);
filldraw(Circle(dir(330), r), white);
[/asy]
The area of the large circle is 1. What is the area of the shaded region?
2024 Sharygin Geometry Olympiad, 8.4
A square with side $1$ is cut from the paper. Construct a segment with length $1/2024$ using at most $20$ folds. No instruments are available. It is allowed only to fold the paper and to mark the common points of folding lines.
2009 Hungary-Israel Binational, 1
Given is the convex quadrilateral $ ABCD$. Assume that there exists a point $ P$ inside the quadrilateral for which the triangles $ ABP$ and $ CDP$ are both isosceles right triangles with the right angle at the common vertex $ P$. Prove that there exists a point $ Q$ for which the triangles $ BCQ$ and $ ADQ$ are also isosceles right triangles with the right angle at the common vertex $ Q$.
2023 Peru MO (ONEM), 3
Prove that, for every integer $n \ge 2$, it is possible to divide a regular hexagon into $n$ quadrilaterals such that any two of them are similar.
Clarification: Two quadrilaterals are similar if they have their corresponding sides proportional and their corresponding angles are equal, that is, the quadrilaterals $ABCD$ and $EFGH$ are similar if $\frac{AB}{EF}= \frac{BC}{FG}= \frac{CD}{GH} = \frac{DA}{HE}$, $\angle ABC = \angle EFG$, $\angle BCD = \angle FGH$, $\angle CDA = \angle GHE$ and $\angle DAB = \angle HEF$.
2022 Ecuador NMO (OMEC), 1
Prove that it is impossible to divide a square with side length $7$ into exactly $36$ squares with integer side lengths.
2004 Cuba MO, 5
Consider a circle $K$ and an inscribed quadrilateral $ABCD$, such that the diagonal $BD$ is not the diameter of the circle. Prove that the intersection of the lines tangent to $K$ through the points $B$ and $D$ lies on the line $AC$ if and only if $AB \cdot CD = AD \cdot BC$.
2009 Today's Calculation Of Integral, 472
Given a line segment $ PQ$ moving on the parabola $ y \equal{} x^2$ with end points on the parabola. The area of the figure surrounded by $ PQ$ and the parabola is always equal to $ \frac {4}{3}$. Find the equation of the locus of the mid point $ M$ of $ PQ$.
2006 May Olympiad, 2
A rectangle of paper of $3$ cm by $9$ cm is folded along a straight line, making two opposite vertices coincide. In this way a pentagon is formed. Calculate it's area.
2017 Princeton University Math Competition, 6
In regular pentagon $ABCDE$, let $O \in CE$ be the center of circle $\Gamma$ tangent to $DA$ and $DE$. $\Gamma$ meets $DE$ at $X$ and $DA$ at $Y$ . Let the altitude from $B$ meet $CD$ at $P$. If $CP = 1$, the area of $\vartriangle COY$ can be written in the form $\frac{a}{b} \frac{\sin c^o}{\cos^2 c^o}$ , where $a$ and $b$ are relatively prime positive integers and $c$ is an integer in the range $(0, 90)$. Find $a + b + c$.
2017 NIMO Problems, 1
In the diagram below, how many rectangles can be drawn using the grid lines which contain none of the letters $N$, $I$, $M$, $O$?
[asy]
size(4cm);
for(int i=0;i<6;++i)draw((i,0)--(i,5)^^(0,i)--(5,i));
label("$N$", (1.5, 2.5));
label("$I$", (2.5, 3.5));
label("$M$", (3.5, 2.5));
label("$O$", (2.5, 1.5));
[/asy]
[i]Proposed by Michael Tang[/i]
2002 China Second Round Olympiad, 1
In $\triangle ABC$, $\angle A = 60$, $AB>AC$, point $O$ is the circumcenter and $H$ is the intersection point of two altitudes $BE$ and $CF$. Points $M$ and $N$ are on the line segments $BH$ and $HF$ respectively, and satisfy $BM=CN$. Determine the value of $\frac{MH+NH}{OH}$.
Swiss NMO - geometry, 2019.1
Let $A$ be a point and let k be a circle through $A$. Let $B$ and $C$ be two more points on $k$. Let $X$ be the intersection of the bisector of $\angle ABC$ with $k$. Let $Y$ be the reflection of $A$ wrt point $X$, and $D$ the intersection of the straight line $YC$ with $k$. Prove that point $D$ is independent of the choice of $B$ and $C$ on the circle $k$.
1967 Polish MO Finals, 2
Prove that if points $ A_1, B_1, C_1 $ lying on the sides $ BC, CA, AB $ of a triangle $ ABC $ are the orthogonal projections of a point $ P $ of the triangle onto these sides, then $$ AC_1^2 + BA_1^2 + CB_1^2 = AB_1^2 + BC_1^2 + CA_1^2.$$
2013 Baltic Way, 15
Four circles in a plane have a common center. Their radii form a strictly increasing arithmetic progression. Prove that there is no square with each vertex lying on a different circle.
2022 Chile Junior Math Olympiad, 2
In a trapezoid $ABCD$ whose parallel sides $AB$ and $CD$ are in ratio $\frac{AB}{CD}=\frac32$, the points $ N$ and $M$ are marked on the sides $BC$ and $AB$ respectively, in such a way that $BN = 3NC$ and $AM = 2MB$ and segments $AN$ and $DM$ are drawn that intersect at point $P$, find the ratio between the areas of triangle $APM$ and trapezoid $ABCD$.
[img]https://cdn.artofproblemsolving.com/attachments/7/8/21d59ca995d638dfcb76f9508e439fd93a5468.png[/img]
2014 NIMO Summer Contest, 8
Aaron takes a square sheet of paper, with one corner labeled $A$. Point $P$ is chosen at random inside of the square and Aaron folds the paper so that points $A$ and $P$ coincide. He cuts the sheet along the crease and discards the piece containing $A$. Let $p$ be the probability that the remaining piece is a pentagon. Find the integer nearest to $100p$.
[i]Proposed by Aaron Lin[/i]
2011 Romania National Olympiad, 3
Let $ ABC $ be a triangle, $ I_a $ be center of the $ A\text{-excircle}. $ This excircle intersects the lines $ AB, AC, $ at $ P, $ respectively, $ Q. $ The line $ PQ $ intersects the lines $ I_aB,I_aC $ at $ D, $ respectively, $ E. $ Let $ A_1 $ be the intersection of $ DC $ with $ BE, $ and define, analogously, $ B_1,C_1. $ Show that $ AA_1,BB_1,CC_1 $ are concurrent.