This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2012 ELMO Shortlist, 1

In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$. [i]Ray Li.[/i]

2008 China Team Selection Test, 1

Prove that in a plane, arbitrary $ n$ points can be overlapped by discs that the sum of all the diameters is less than $ n$, and the distances between arbitrary two are greater than $ 1$. (where the distances between two discs that have no common points are defined as that the distances between its centers subtract the sum of its radii; the distances between two discs that have common points are zero)

2010 Stanford Mathematics Tournament, 9

For an acute triangle $ABC$ and a point $X$ satisfying $\angle{ABX}+\angle{ACX}=\angle{CBX}+\angle{BCX}$. Fi nd the minimum length of $AX$ if $AB=13$, $BC=14$, and $CA=15$.

MMPC Part II 1958 - 95, 1981

[b]p1.[/b] A canoeist is paddling upstream in a river when she passes a log floating downstream,, She continues upstream for awhile, paddling at a constant rate. She then turns around and goes downstream and paddles twice as fast. She catches up to the same log two hours after she passed it. How long did she paddle upstream? [b]p2.[/b] Let $g(x) =1-\frac{1}{x}$ and define $g_1(x) = g(x)$ and $g_{n+1}(x) = g(g_n(x))$ for $n = 1,2,3, ...$. Evaluate $g_3(3)$ and $g_{1982}(l982)$. [b]p3.[/b] Let $Q$ denote quadrilateral $ABCD$ where diagonals $AC$ and $BD$ intersect. If each diagonal bisects the area of $Q$ prove that $Q$ must be a parallelogram. [b]p4.[/b] Given that: $a_1, a_2, ..., a_7$ and $b_1, b_2, ..., b_7$ are two arrangements of the same seven integers, prove that the product $(a_1-b_1)(a_2-b_2)...(a_7-b_7)$ is always even. [b]p5.[/b] In analyzing the pecking order in a finite flock of chickens we observe that for any two chickens exactly one pecks the other. We decide to call chicken $K$ a king provided that for any other chicken $X, K$ necks $X$ or $K$ pecks a third chicken $Y$ who in turn pecks $X$. Prove that every such flock of chickens has at least one king. Must the king be unique? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 Olimphíada, 1

Let $ABC$ be a triangle and $H$ and $D$ be the feet of the height and bisector relative to $A$ in $BC$, respectively. Let $E$ be the intersection of the tangent to the circumcircle of $ABC$ by $A$ with $BC$ and $M$ be the midpoint of $AD$. Finally, let $r$ be the line perpendicular to $BC$ that passes through $M$. Show that $r$ is tangent to the circumcircle of $AHE$.

2010 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be a triangle inscribed in the circle $(O)$. Let $I$ be the center of the circle inscribed in the triangle and $D$ the point of contact of the circle inscribed with the side $BC$. Let $M$ be the second intersection point of the bisector $AI$ with the circle $(O)$ and let $P$ be the point where the line $DM$ intersects the circle $(O)$ . Show that $PA \perp PI$.

1997 Greece National Olympiad, 1

Tags: geometry , function
Let $P$ be a point inside or on the boundary of a square $ABCD$. Find the minimum and maximum values of $f(P ) = \angle ABP + \angle BCP + \angle CDP + \angle DAP$.

2009 Sharygin Geometry Olympiad, 6

Tags: polygon , geometry
Can four equal polygons be placed on the plane in such a way that any two of them don't have common interior points, but have a common boundary segment? (S.Markelov)

Novosibirsk Oral Geo Oly VII, 2019.6

Two turtles, the leader and the slave, are crawling along the plane from point $A$ to point $B$. They crawl in turn: first the leader crawls some distance, then the slave crawls some distance in a straight line towards the leading one. Then the leader crawls somewhere again, after which the slave crawls towards the leader, etc. Finally, they both crawl to $B$. Prove that the slave turtle crawled no more than the leading one.

2014 Cono Sur Olympiad, 5

Let $ABCD$ be an inscribed quadrilateral in a circumference with center $O$ such that it lies inside $ABCD$ and $\angle{BAC} = \angle{ODA}$. Let $E$ be the intersection of $AC$ with $BD$. Lines $r$ and $s$ are drawn through $E$ such that $r$ is perpendicular to $BC$, and $s$ is perpendicular to $AD$. Let $P$ be the intersection of $r$ with $AD$, and $M$ the intersection of $s$ with $BC$. Let $N$ be the midpoint of $EO$. Prove that $M$, $N$, and $P$ lie on a line.

1949-56 Chisinau City MO, 44

Determine the locus of points, for each of which the difference between the squares of the distances to two given points is a constant value.

2010 Postal Coaching, 4

Five distinct points $A, B, C, D$ and $E$ lie in this order on a circle of radius $r$ and satisfy $AC = BD = CE = r$. Prove that the orthocentres of the triangles $ACD, BCD$ and $BCE$ are the vertices of a right-angled triangle.

2007 Silk Road, 2

Let $\omega$ be the incircle of triangle $ABC$ touches $BC$ at point $K$ . Draw a circle passing through points $B$ and $C$ , and touching $\omega$ at the point $S$ . Prove that $S K$ passes through the center of the exscribed circle of triangle $A B C$ , tangent to side $B C$ .

2019 Dürer Math Competition (First Round), P5

Let $ABC$ be a non-right-angled triangle, with $AC\ne BC$. Let $F$ be the midpoint of side $BC$. Let $D$ be a point on line $AB$ satisfying$CA=CD$,and let $E$ be a point on line $BC$ satisfying $EB = ED$. The line passing through $A$ and parallel to $ED$ meets line $FD$ at point $I$. Line $AF$ meets line $ED$ at point $J$. Prove that points $C$, $I$ and $J$ are collinear.

2014 AMC 10, 22

In rectangle $ABCD$, $AB=20$ and $BC=10$. Let $E$ be a point on $\overline{CD}$ such that $\angle CBE=15^\circ$. What is $AE$? $ \textbf{(A)}\ \dfrac{20\sqrt3}3\qquad\textbf{(B)}\ 10\sqrt3\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 11\sqrt3\qquad\textbf{(E)}\ 20 $

1966 IMO Longlists, 32

The side lengths $a,$ $b,$ $c$ of a triangle $ABC$ form an arithmetical progression (such that $b-a=c-b$). The side lengths $a_{1},$ $b_{1},$ $c_{1}$ of a triangle $A_{1}B_{1}C_{1}$ also form an arithmetical progression (with $b_{1}-a_{1}=c_{1}-b_{1}$). [Hereby, $a=BC,$ $b=CA,$ $c=AB, $ $a_{1}=B_{1}C_{1},$ $b_{1}=C_{1}A_{1},$ $c_{1}=A_{1}B_{1}.$] Moreover, we know that $\measuredangle CAB=\measuredangle C_{1}A_{1}B_{1}.$ Show that triangles $ABC$ and $A_{1}B_{1}C_{1}$ are similar.

2025 China Team Selection Test, 16

Tags: geometry
In convex quadrilateral $ABCD, AB \perp AD, AD = DC$. Let $ E$ be a point on side $BC$, and $F$ be a point on the extension of $DE$ such that $\angle ABF = \angle DEC>90^{\circ}$. Let $O$ be the circumcenter of $\triangle CDE$, and $P$ be a point on the side extension of $FO$ satisfying $FB =FP$. Line BP intersects AC at point Q. Prove that $\angle AQB =\angle DPF.$

Indonesia MO Shortlist - geometry, g10

Given a triangle $ABC$ with incenter $I$ . It is known that $E_A$ is center of the ex-circle tangent to $BC$. Likewise, $E_B$ and $E_C$ are the centers of the ex-circles tangent to $AC$ and $AB$, respectively. Prove that $I$ is the orthocenter of the triangle $E_AE_BE_C$.

2005 Romania National Olympiad, 4

Let $x_1,x_2,\ldots,x_n$ be positive reals. Prove that \[ \frac 1{1+x_1} + \frac 1{1+x_1+x_2} + \cdots + \frac 1{1+x_1+\cdots + x_n} < \sqrt { \frac 1{x_1} + \frac 1{x_2} + \cdots + \frac 1{x_n}} . \] [i]Bogdan Enescu[/i]

2000 Saint Petersburg Mathematical Olympiad, 11.1

An equilateral triangle with side length 9 is divided into 81 congruent triangles with segments which are parallel to the sides of the triangle. Prove that it cannot be divided into more than 18 parallelograms with sides 1 and 2. [I]Proposed by O.Vanyushina[/i]

2024 USA IMO Team Selection Test, 2

Tags: geometry , incenter
Let $ABC$ be a triangle with incenter $I$. Let segment $AI$ intersect the incircle of triangle $ABC$ at point $D$. Suppose that line $BD$ is perpendicular to line $AC$. Let $P$ be a point such that $\angle BPA = \angle PAI = 90^\circ$. Point $Q$ lies on segment $BD$ such that the circumcircle of triangle $ABQ$ is tangent to line $BI$. Point $X$ lies on line $PQ$ such that $\angle IAX = \angle XAC$. Prove that $\angle AXP = 45^\circ$. [i]Luke Robitaille[/i]

2019 Moldova Team Selection Test, 5

Tags: geometry
Point $H$ is the orthocenter of the scalene triangle $ABC.$ A line, which passes through point $H$, intersect the sides $AB$ and $AC$ at points $D$ and $E$, respectively, such that $AD=AE.$ Let $M$ be the midpoint of side $BC.$ Line $MH$ intersects the circumscribed circle of triangle $ABC$ at point $K$, which is on the smaller arc $AB$. Prove that Nibab can draw a circle through $A, D, E$ and $K.$

2007 Croatia Team Selection Test, 5

Tags: ratio , geometry , symmetry
Let there be two circles. Find all points $M$ such that there exist two points, one on each circle such that $M$ is their midpoint.

DMM Devil Rounds, 2007

[b]p1.[/b] If $$ \begin{cases} a^2 + b^2 + c^2 = 1000 \\ (a + b + c)^2 = 100 \\ ab + bc = 10 \end{cases}$$ what is $ac$? [b]p2.[/b] If a and b are real numbers such that $a \ne 0$ and the numbers $1$, $a + b$, and $a$ are, in some order, the numbers $0$, $\frac{b}{a}$ , and $b$, what is $b - a$? [b]p3.[/b] Of the first $120$ natural numbers, how many are divisible by at least one of $3$, $4$, $5$, $12$, $15$, $20$, and $60$? [b]p4.[/b] For positive real numbers $a$, let $p_a$ and $q_a$ be the maximum and minimum values, respectively, of $\log_a(x)$ for $a \le x \le 2a$. If $p_a - q_a = \frac12$ , what is $a$? [b]p5.[/b] Let $ABC$ be an acute triangle and let $a$, $b$, and $c$ be the sides opposite the vertices $A$, $B$, and $C$, respectively. If $a = 2b \sin A$, what is the measure of angle $B$? [b]p6.[/b] How many ordered triples $(x, y, z)$ of positive integers satisfy the equation $$x^3 + 2y^3 + 4z^3 = 9?$$ [b]p7.[/b] Joe has invented a robot that travels along the sides of a regular octagon. The robot starts at a vertex of the octagon and every minute chooses one of two directions (clockwise or counterclockwise) with equal probability and moves to the next vertex in that direction. What is the probability that after $8$ minutes the robot is directly opposite the vertex it started from? [b]p8.[/b] Find the nonnegative integer $n$ such that when $$\left(x^2 -\frac{1}{x}\right)^n$$ is completely expanded the constant coefficient is $15$. [b]p9.[/b] For each positive integer $k$, let $$f_k(x) = \frac{kx + 9}{x + 3}.$$ Compute $$f_1 \circ f_2\circ ... \circ f_{13}(2).$$ [b]p10.[/b] Exactly one of the following five integers cannot be written in the form $x^2 + y^2 + 5z^2$, where $x$, $y$, and $z$ are integers. Which one is it? $$2003, 2004, 2005, 2006, 2007$$ [b]p11.[/b] Suppose that two circles $C_1$ and $C_2$ intersect at two distinct points $M$ and $N$. Suppose that $P$ is a point on the line $MN$ that is outside of both $C_1$ and $C_2$. Let $A$ and $B$ be the two distinct points on $C_1$ such that AP and BP are each tangent to $C_1$ and $B$ is inside $C_2$. Similarly, let $D$ and $E$ be the two distinct points on $C_2$ such that $DP$ and $EP$ are each tangent to $C_2$ and $D$ is inside $C_1$. If $AB = \frac{5\sqrt2}{2}$ , $AD = 2$, $BD = 2$, $EB = 1$, and $ED =\sqrt2$, find $AE$. [b]p12.[/b] How many ordered pairs $(x, y)$ of positive integers satisfy the following equation? $$\sqrt{x} +\sqrt{y} =\sqrt{2007}.$$ [b]p13.[/b] The sides $BC$, $CA$, and $CB$ of triangle $ABC$ have midpoints $K$, $L$, and $M$, respectively. If $$AB^2 + BC^2 + CA^2 = 200,$$ what is $AK^2 + BL^2 + CM^2$? [b]p14.[/b] Let $x$ and $y$ be real numbers that satisfy: $$x + \frac{4}{x}= y +\frac{4}{y}=\frac{20}{xy}.$$ Compute the maximum value of $|x - y|$. [b]p15.[/b] $30$ math meet teams receive different scores which are then shuffled around to lend an aura of mystery to the grading. What is the probability that no team receives their own score? Express your answer as a decimal accurate to the nearest hundredth. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2009 India IMO Training Camp, 10

Tags: geometry , inradius
For a certain triangle all of its altitudes are integers whose sum is less than 20. If its Inradius is also an integer Find all possible values of area of the triangle.