This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2011 JHMT, 9

Tags: geometry
In a unit square $ABCD$, find the minimum of $\sqrt2 AP + BP + CP$ where $P$ is a point inside $ABCD$.

2000 Rioplatense Mathematical Olympiad, Level 3, 5

Tags: geometry
Let $ABC$ be a triangle with $AB < AC$, let $L$ be midpoint of arc $BC$(the point $A$ is not in this arc) of the circumcircle $w$($ABC$). Let $E$ be a point in $AC$ where $AE = \frac{AB + AC}{2}$, the line $EL$ intersects $w$ in $P$. If $M$ and $N$ are the midpoints of $AB$ and $BC$, respectively, prove that $AL, BP$ and $MN$ are concurrents

2019 International Zhautykov OIympiad, 4

Tags: geometry
Triangle $ABC$ with $AC=BC$ given and point $D$ is chosen on the side $AC$. $S1$ is a circle that touches $AD$ and extensions of $AB$ and $BD$ with radius $R$ and center $O_1$. $S2$ is a circle that touches $CD$ and extensions of $BC$ and $BD$ with radius $2R$ and center $O_2$. Let $F$ be intersection of the extension of $AB$ and tangent at $O_2$ to circumference of $BO_1O_2$. Prove that $FO_1=O_1O_2$.

2010 Princeton University Math Competition, 8

Point $P$ is in the interior of $\triangle ABC$. The side lengths of $ABC$ are $AB = 7$, $BC = 8$, $CA = 9$. The three foots of perpendicular lines from $P$ to sides $BC$, $CA$, $AB$ are $D$, $E$, $F$ respectively. Suppose the minimal value of $\frac{BC}{PD} + \frac{CA}{PE} + \frac{AB}{PF}$ can be written as $\frac{a}{b}\sqrt{c}$, where $\gcd(a,b) = 1$ and $c$ is square free, calculate $abc$. [asy] size(120); pathpen = linewidth(0.7); pointfontpen = fontsize(10); // pointpen = black; pair B=(0,0), C=(8,0), A=IP(CR(B,7),CR(C,9)), P = (2,1.6), D=foot(P,B,C), E=foot(P,A,C), F=foot(P,A,B); D(A--B--C--cycle); D(P--D); D(P--E); D(P--F); D(MP("A",A,N)); D(MP("B",B)); D(MP("C",C)); D(MP("D",D)); D(MP("E",E,NE)); D(MP("F",F,NW)); D(MP("P",P,SE)); [/asy]

2001 AMC 10, 17

Which of the cones listed below can be formed from a $ 252^\circ$ sector of a circle of radius $ 10$ by aligning the two straight sides? [asy]import graph;unitsize(1.5cm);defaultpen(fontsize(8pt));draw(Arc((0,0),1,-72,180),linewidth(.8pt));draw(dir(288)--(0,0)--(-1,0),linewidth(.8pt));label("$10$",(-0.5,0),S);draw(Arc((0,0),0.1,-72,180));label("$252^{\circ}$",(0.05,0.05),NE);[/asy] [asy] import three; picture mainframe; defaultpen(fontsize(11pt)); picture conePic(picture pic, real r, real h, real sh) { size(pic, 3cm); triple eye = (11, 0, 5); currentprojection = perspective(eye); real R = 1, y = 2; triple center = (0, 0, 0); triple radPt = (0, R, 0); triple negRadPt = (0, -R, 0); triple heightPt = (0, 0, y); draw(pic, arc(center, radPt, negRadPt, heightPt, CW)); draw(pic, arc(center, radPt, negRadPt, heightPt, CCW), linetype("8 8")); draw(pic, center--radPt, linetype("8 8")); draw(pic, center--heightPt, linetype("8 8")); draw(pic, negRadPt--heightPt--radPt); label(pic, (string) r, center--radPt, dir(270)); if (h != 0) { label(pic, (string) h, heightPt--center, dir(0)); } if (sh != 0) { label(pic, (string) sh, heightPt--radPt, dir(0)); } return pic; } picture pic1; pic1 = conePic(pic1, 6, 0, 10); picture pic2; pic2 = conePic(pic2, 6, 10, 0); picture pic3; pic3 = conePic(pic3, 7, 0, 10); picture pic4; pic4 = conePic(pic4, 7, 10, 0); picture pic5; pic5 = conePic(pic5, 8, 0, 10); picture aux1; picture aux2; picture aux3; add(aux1, pic1.fit(), (0,0), W); label(aux1, "$\textbf{(A)}$", (0,0), 22W, linewidth(4)); label(aux1, "$\textbf{(B)}$", (0,0), 3E); add(aux1, pic2.fit(), (0,0), 35E); add(aux2, aux1.fit(), (0,0), W); label(aux2, "$\textbf{(C)}$", (0,0), 3E); add(aux2, pic3.fit(), (0,0), 35E); add(aux3, aux2.fit(), (0,0), W); label(aux3, "$\textbf{(D)}$", (0,0), 3E); add(aux3, pic4.fit(), (0,0), 35E); add(mainframe, aux3.fit(), (0,0), W); label(mainframe, "$\textbf{(E)}$", (0,0), 3E); add(mainframe, pic5.fit(), (0,0), 35E); add(mainframe.fit(), (0,0), N); [/asy]

Novosibirsk Oral Geo Oly VII, 2021.7

Two congruent rectangles are located as shown in the figure. Find the area of the shaded part. [img]https://cdn.artofproblemsolving.com/attachments/2/e/10b164535ab5b3a3b98ce1a0b84892cd11d76f.png[/img]

1978 Czech and Slovak Olympiad III A, 5

Let $ABCS$ be an isosceles trapezoid. Denote $A',B',C',D'$ the incenters of triangles $BCD,CDA,$ $DAB,ABC,$ respectively. Show that $A',B',C',D'$ are vertices of a rectangle.

2023 Vietnam National Olympiad, 4

Tags: geometry
Given is a triangle $ABC$ and let $D$ be the midpoint the major arc $BAC$ of its circumcircle. Let $M , N$ be the midpoints of $AB , AC$ and $J , E , F$ are the touchpoints of the incircle $(I)$ of $\triangle ABC$ with $BC, CA, AB$. The line $MN$ intersects $JE , JF$ at $K , H$ respectively; $IJ$ intersects the circle $(BIC)$ at $G$ and $DG$ intersects $(BIC)$ at $T$. a) Prove that $JA$ passes through the midpoint of $HK$ and is perpendicular to $IT$. b) Let $R, S$ respectively be the perpendicular projection of $D$ on $AB, AC$. Take the points $P, Q$ on $IF , IE$ respectively such that $KP$ and $HQ$ are both perpendicular to $MN$. Prove that the three lines $MP , NQ$ and $RS$ are concurrent .

2011 Canada National Olympiad, 3

Amy has divided a square into finitely many white and red rectangles, each with sides parallel to the sides of the square. Within each white rectangle, she writes down its width divided by its height. Within each red rectangle, she writes down its height divided by its width. Finally, she calculates $x$, the sum of these numbers. If the total area of white equals the total area of red, determine the minimum of $x$.

1989 Tournament Of Towns, (206) 4

Can one draw , on the surface of a Rubik's cube , a closed path which crosses each little square exactly once and does not pass through any vertex of a square? (S . Fomin, Leningrad)

1990 IMO Longlists, 60

Unit cubes are made into beads by drilling a hole through them along a diagonal. The beads are put on a string in such a way that they can move freely in space under the restriction that the vertices of two neighboring cubes are touching. Let $ A$ be the beginning vertex and $ B$ be the end vertex. Let there be $ p \times q \times r$ cubes on the string $ (p, q, r \geq 1).$ [i](a)[/i] Determine for which values of $ p, q,$ and $ r$ it is possible to build a block with dimensions $ p, q,$ and $ r.$ Give reasons for your answers. [i](b)[/i] The same question as (a) with the extra condition that $ A \equal{} B.$

1964 Swedish Mathematical Competition, 4

Points $H_1, H_2, ... , H_n$ are arranged in the plane so that each distance $H_iH_j \le 1$. The point $P$ is chosen to minimise $\max (PH_i)$. Find the largest possible value of $\max (PH_i)$ for $n = 3$. Find the best upper bound you can for $n = 4$.

2017 239 Open Mathematical Olympiad, 2

Inside the circle $\omega$ through points $A, B$ point $C$ is chosen. An arbitrary point $X$ is selected on the segment $BC$. The ray $AX$ cuts the circle in $Y$. Prove that all circles $CXY$ pass through a two fixed points that is they intersect and are coaxial, independent of the position of $X$.

2024 Harvard-MIT Mathematics Tournament, 5

Let $ABCD$ be a convex trapezoid such that $\angle{DAB}=\angle{ABC}=90^{\circ},DA=2,AB=3,$ and $BC=8$. Let $\omega$ be a circle passing through $A$ and tangent to segment $CD$ at point $T$. Suppose that the center of $\omega$ lies on line $BC$. Compute $CT$.

2012 Princeton University Math Competition, B8

Tags: geometry
A cyclic quadrilateral $ABCD$ has side lengths $AB = 3, BC = AD = 5$, and $CD = 8$. The radius of its circumcircle can be written in the form $a\sqrt{b}/c$, where $a, b, c$ are positive integers, $a, c$ are relatively prime, and $b$ is not divisible by the square of any prime. Find $a + b + c$.

1991 Tournament Of Towns, (295) 2

The chord $MN$ on the circle is fixed. For every diameter $AB$ of the circle consider the intersection point $C$ of the lines $AM$ and $BN$ and construct the line $\ell$ passing through $C$ perpendicularly to $AB$. Prove that all the lines $\ell$ pass through a fixed point. (E. Kulanin, Moscow)

2021 Yasinsky Geometry Olympiad, 5

In triangle $ABC$, point $I$ is the center of the inscribed circle. $AT$ is a segment tangent to the circle circumscribed around the triangle $BIC$ . On the ray $AB$ beyond the point$ B$ and on the ray $AC$ beyond the point $C$, we draw the segments $BD$ and $CE$, respectively, such that $BD = CE = AT$. Let the point $F$ be such that $ABFC$ is a parallelogram. Prove that points $D, E$ and $F$ lie on the same line. (Dmitry Prokopenko)

2023 Germany Team Selection Test, 1

In a triangle $\triangle ABC$ with orthocenter $H$, let $BH$ and $CH$ intersect $AC$ and $AB$ at $E$ and $F$, respectively. If the tangent line to the circumcircle of $\triangle ABC$ passing through $A$ intersects $BC$ at $P$, $M$ is the midpoint of $AH$, and $EF$ intersects $BC$ at $G$, then prove that $PM$ is parallel to $GH$. [i]Proposed by Sreejato Bhattacharya[/i]

1983 AMC 12/AHSME, 2

Point $P$ is outside circle $C$ on the plane. At most how many points on $C$ are $3 \text{cm}$ from $P$? $\text{(A)} \ 1 \qquad \text{(B)} \ 2 \qquad \text{(C)} \ 3 \qquad \text{(D)} \ 4 \qquad \text{(E)} \ 8$

2020 Yasinsky Geometry Olympiad, 5

It is known that a circle can be inscribed in the quadrilateral $ABCD$, in addition $\angle A = \angle C$. Prove that $AB = BC$, $CD = DA$. (Olena Artemchuk)

1994 Romania TST for IMO, 4:

Tags: geometry
Inscribe an equilateral triangle of minimum side in a given acute-angled triangle $ABC$ (one vertex on each side).

2004 Finnish National High School Mathematics Competition, 3

Tags: geometry
Two circles with radii $r$ and $R$ are externally tangent. Determine the length of the segment cut from the common tangent of the circles by the other common tangents.

Durer Math Competition CD 1st Round - geometry, 2019.C3

Tags: area , geometry
The best parts of grandma’s $30$ cm $ \times 30$ cm square shaped pie are the edges. For this reason grandma’s three grandchildren would like to split the pie between each other so that everyone gets the same amount (of the area) of the pie, but also of the edges. Can they cut the pie into three connected pieces like that?

2018 IFYM, Sozopol, 7

Tags: geometry
For a non-isosceles $ABC$ we have that $2AC = AB + BC$. Point $I$ is the center of the circle inscribed in $\triangle ABC$, point $K$ is the middle of the arc $\widehat{AC}$ that includes point $B$, and point $T$ is from the line $AC$, such that $\angle TIB = 90^\circ$. Prove that the line $TB$ is tangent to the circumscribed circle of $\triangle KBI$.

EMCC Accuracy Rounds, 2019

[b]p1.[/b] A shape made by joining four identical regular hexagons side-to-side is called a hexo. Two hexos are considered the same if one can be rotated / reflected to match the other. Find the number of different hexos. [b]p2.[/b] The sequence $1, 2, 3, 3, 3, 4, 5, 5, 5, 5, 5, 6,... $ consists of numbers written in increasing order, where every even number $2n$ is written once, and every odd number $2n + 1$ is written $2n + 1$ times. What is the $2019^{th}$ term of this sequence? [b]p3.[/b] On planet EMCCarth, months can only have lengths of $35$, $36$, or $42$ days, and there is at least one month of each length. Victor knows that an EMCCarth year has $n$ days, but realizes that he cannot figure out how many months there are in an EMCCarth year. What is the least possible value of $n$? [b]p4.[/b] In triangle $ABC$, $AB = 5$ and $AC = 9$. If a circle centered at $A$ passing through $B$ intersects $BC$ again at $D$ and $CD = 7$, what is $BC$? [b]p5.[/b] How many nonempty subsets $S$ of the set $\{1, 2, 3,..., 11, 12\}$ are there such that the greatest common factor of all elements in $S$ is greater than $1$? [b]p6.[/b] Jasmine rolls a fair $6$-sided die, with faces labeled from $1$ to $6$, and a fair $20$-sided die, with faces labeled from $1$ to $20$. What is the probability that the product of these two rolls, added to the sum of these two rolls, is a multiple of $3$? [b]p7.[/b] Let $\{a_n\}$ be a sequence such that $a_n$ is either $2a_{n-1}$ or $a_{n-1} - 1$. Given that $a_1 = 1$ and $a_{12} = 120$, how many possible sequences $a_1$, $a_2$, $...$, $a_{12}$ are there? [b]p8.[/b] A tetrahedron has two opposite edges of length $2$ and the remaining edges have length $10$. What is the volume of this tetrahedron? [b]p9.[/b] In the garden of EMCCden, there is a tree planted at every lattice point $-10 \le x, y \le 10$ except the origin. We say that a tree is visible to an observer if the line between the tree and the observer does not intersect any other tree (assume that all trees have negligible thickness). What fraction of all the trees in the garden of EMCCden are visible to an observer standing at the origin? [b]p10.[/b] Point $P$ lies inside regular pentagon $\zeta$, which lies entirely within regular hexagon $\eta$. A point $Q$ on the boundary of pentagon $\zeta$ is called projective if there exists a point $R$ on the boundary of hexagon $\eta$ such that $P$, $Q$, $R$ are collinear and $2019 \cdot \overline{PQ} = \overline{QR}$. Given that no two sides of $\zeta$ and $\eta$ are parallel, what is the maximum possible number of projective points on $\zeta$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].