This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2022 Germany Team Selection Test, 2

Tags: geometry
Find all integers $n\geq 3$ for which every convex equilateral $n$-gon of side length $1$ contains an equilateral triangle of side length $1$. (Here, polygons contain their boundaries.)

2020 Dutch Mathematical Olympiad, 3

Given is a parallelogram $ABCD$ with $\angle A < 90^o$ and $|AB| < |BC|$. The angular bisector of angle $A$ intersects side $BC$ in $M$ and intersects the extension of $DC$ in $N$. Point $O$ is the centre of the circle through $M, C$, and $N$. Prove that $\angle OBC = \angle ODC$. [asy] unitsize (1.2 cm); pair A, B, C, D, M, N, O; A = (0,0); B = (2,0); D = (1,3); C = B + D - A; M = extension(A, incenter(A,B,D), B, C); N = extension(A, incenter(A,B,D), D, C); O = circumcenter(C,M,N); draw(D--A--B--C); draw(interp(D,N,-0.1)--interp(D,N,1.1)); draw(A--interp(A,N,1.1)); draw(circumcircle(M,C,N)); label("$\circ$", A + (0.45,0.15)); label("$\circ$", A + (0.25,0.35)); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, dir(90)); dot("$D$", D, dir(90)); dot("$M$", M, SE); dot("$N$", N, dir(90)); dot("$O$", O, SE); [/asy]

2014 Contests, 2

Tags: geometry
Suppose $ABCD$ is a convex quadrilateral.Points $P,Q,R$ and $S$ are four points on the line segments $AB,BC,CD$ and $DA$ respectively.The line segments $PR$ and $QS$ meet at $T$.Suppose that each of the quadrilaterals $APTS,BQTP,CRTQ$ and $DSTR$ have an incircle.Prove that the quadrilateral $ABCD$ also has an incircle.

2003 China Team Selection Test, 2

Denote by $\left(ABC\right)$ the circumcircle of a triangle $ABC$. Let $ABC$ be an isosceles right-angled triangle with $AB=AC=1$ and $\measuredangle CAB=90^{\circ}$. Let $D$ be the midpoint of the side $BC$, and let $E$ and $F$ be two points on the side $BC$. Let $M$ be the point of intersection of the circles $\left(ADE\right)$ and $\left(ABF\right)$ (apart from $A$). Let $N$ be the point of intersection of the line $AF$ and the circle $\left(ACE\right)$ (apart from $A$). Let $P$ be the point of intersection of the line $AD$ and the circle $\left(AMN\right)$. Find the length of $AP$.

1973 Spain Mathematical Olympiad, 4

Let $C$ and $C'$ be two concentric circles of radii $r$ and $r'$ respectively. Determine how much the quotient $r'/r$ must be worth so that in the limited crown (annulus) through $C$ and $C'$ there are eight circles $C_i$ , $i = 1, . . . , 8$, which are tangent to $C$ and to $C'$ , and also that $C_i$ is tangent to $C_{i+1}$ for $i = 1, . . . ,7$ and $C_8$ tangent to $C_1$ .

LMT Guts Rounds, 2023 S

[u]Round 1[/u] [b]p1.[/b] Solve the maze [img]https://cdn.artofproblemsolving.com/attachments/8/c/6439816a52b5f32c3cb415e2058556edb77c80.png[/img] [b]p2.[/b] Billiam can write a problem in $30$ minutes, Jerry can write a problem in $10$ minutes, and Evin can write a problem in $20$ minutes. Billiam begins writing problems alone at $3:00$ PM until Jerry joins himat $4:00$ PM, and Evin joins both of them at $4:30$ PM. Given that they write problems until the end of math team at $5:00$ PM, how many full problems have they written in total? [b]p3.[/b] How many pairs of positive integers $(n,k)$ are there such that ${n \choose k}= 6$? [u]Round 2 [/u] [b]p4.[/b] Find the sumof all integers $b > 1$ such that the expression of $143$ in base $b$ has an even number of digits and all digits are the same. [b]p5.[/b] Ιni thinks that $a \# b = a^2 - b$ and $a \& b = b^2 - a$, while Mimi thinks that $a \# b = b^2 - a$ and $a \& b = a^2 - b$. Both Ini and Mimi try to evaluate $6 \& (3 \# 4)$, each using what they think the operations $\&$ and $\#$ mean. What is the positive difference between their answers? [b]p6.[/b] A unit square sheet of paper lies on an infinite grid of unit squares. What is the maximum number of grid squares that the sheet of paper can partially cover at once? A grid square is partially covered if the area of the grid square under the sheet of paper is nonzero - i.e., lying on the edge only does not count. [u]Round 3[/u] [b]p7.[/b] Maya wants to buy lots of burgers. A burger without toppings costs $\$4$, and every added topping increases the price by 50 cents. There are 5 different toppings for Maya to choose from, and she can put any combination of toppings on each burger. How much would it cost forMaya to buy $1$ burger for each distinct set of toppings? Assume that the order in which the toppings are stacked onto the burger does not matter. [b]p8.[/b] Consider square $ABCD$ and right triangle $PQR$ in the plane. Given that both shapes have area $1$, $PQ =QR$, $PA = RB$, and $P$, $A$, $B$ and $R$ are collinear, find the area of the region inside both square $ABCD$ and $\vartriangle PQR$, given that it is not $0$. [b]p9.[/b] Find the sum of all $n$ such that $n$ is a $3$-digit perfect square that has the same tens digit as $\sqrt{n}$, but that has a different ones digit than $\sqrt{n}$. [u]Round 4[/u] [b]p10.[/b] Jeremy writes the string: $$LMTLMTLMTLMTLMTLMT$$ on a whiteboard (“$LMT$” written $6$ times). Find the number of ways to underline $3$ letters such that from left to right the underlined letters spell LMT. [b]p11.[/b] Compute the remainder when $12^{2022}$ is divided by $1331$. [b]p12.[/b] What is the greatest integer that cannot be expressed as the sum of $5$s, $23$s, and $29$s? [u]Round 5 [/u] [b]p13.[/b] Square $ABCD$ has point $E$ on side $BC$, and point $F$ on side $CD$, such that $\angle EAF = 45^o$. Let $BE = 3$, and $DF = 4$. Find the length of $FE$. [b]p14.[/b] Find the sum of all positive integers $k$ such that $\bullet$ $k$ is the power of some prime. $\bullet$ $k$ can be written as $5654_b$ for some $b > 6$. [b]p15.[/b] If $\sqrt[3]{x} + \sqrt[3]{y} = 2$ and $x + y = 20$, compute $\max \,(x, y)$. PS. You should use hide for answers. Rounds 6-9 have been posted [url=https://artofproblemsolving.com/community/c3h3167372p28825861]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 District Olympiad, 2

Tags: vector , geometry
Let $H$ be the orthocenter of the acute triangle $ABC.$ In the plane of the triangle $ABC$ we consider a point $X$ such that the triangle $XAH$ is right and isosceles, having the hypotenuse $AH,$ and $B$ and $X$ are on each part of the line $AH.$ Prove that $\overrightarrow{XA}+\overrightarrow{XC}+\overrightarrow{XH}=\overrightarrow{XB}$ if and only if $ \angle BAC=45^{\circ}.$

2016 Japan MO Preliminary, 3

Tags: angle , geometry
A hexagon $ABCDEF$ is inscribed in a circle. Let $P, Q, R, S$ be intersections of $AB$ and $DC$, $BC$ and $ED$, $CD$ and $FE$, $DE$ and $AF$, then $\angle BPC=50^{\circ}$, $\angle CQD=45^{\circ}$, $\angle DRE=40^{\circ}$, $\angle ESF=35^{\circ}$. Let $T$ be an intersection of $BE$ and $CF$. Find $\angle BTC$.

2013 China Team Selection Test, 1

The quadrilateral $ABCD$ is inscribed in circle $\omega$. $F$ is the intersection point of $AC$ and $BD$. $BA$ and $CD$ meet at $E$. Let the projection of $F$ on $AB$ and $CD$ be $G$ and $H$, respectively. Let $M$ and $N$ be the midpoints of $BC$ and $EF$, respectively. If the circumcircle of $\triangle MNG$ only meets segment $BF$ at $P$, and the circumcircle of $\triangle MNH$ only meets segment $CF$ at $Q$, prove that $PQ$ is parallel to $BC$.

2018 Tuymaada Olympiad, 8

Quadrilateral $ABCD$ with perpendicular diagonals is inscribed in a circle with centre $O$. The tangents to this circle at $A$ and $C$ together with line $BD$ form the triangle $\Delta$. Prove that the circumcircles of $BOD$ and $\Delta$ are tangent. [hide=Additional information for Junior League]Show that this point lies belongs to $\omega$, the circumcircle of $OAC$[/hide] [i]Proposed by A. Kuznetsov[/i]

2024 Durer Math Competition Finals, 2

For every subset $\mathcal{P}$ of the plane let $S(\mathcal{P})$ denote the set of circles and lines that intersect $\mathcal{P}$ in at least three points. Find all sets $\mathcal{P}$ consisting of 2024 points such that for any two distinct elements of $S(\mathcal{P}),$ their intersection points all belong to $\mathcal{P}{}.$

2004 Purple Comet Problems, 23

A cubic block with dimensions $n$ by $n$ by $n$ is made up of a collection of $1$ by $1$ by $1$ unit cubes. What is the smallest value of $n$ so that if the outer layer of unit cubes are removed from the block, more than half the original unit cubes will still remain?

2022 Iran Team Selection Test, 4

Tags: geometry
Cyclic quadrilateral $ABCD$ with circumcenter $O$ is given. Point $P$ is the intersection of diagonals $AC$ and $BD$. Let $M$ and $N$ be the midpoint of the sides $AD$ and $BC$, respectively. Suppose that $\omega_1$, $\omega_2$ and $\omega_3$ be the circumcircle of triangles $ADP$, $BCP$ and $OMN$, respectively. The intersection point of $\omega_1$ and $\omega_3$, which is not on the arc $APD$ of $\omega_1$, is $E$ and the intersection point of $\omega_2$ and $\omega_3$, which is not on the arc $BPC$ of $\omega_2$, is $F$. Prove that $OF=OE$. Proposed by Seyed Amirparsa Hosseini Nayeri

2017 All-Russian Olympiad, 3

In the scalene triangle $ABC$,$\angle ACB=60$ and $\Omega$ is its cirumcirle.On the bisectors of the angles $BAC$ and $CBA$ points $A^\prime$,$B^\prime$ are chosen respectively such that $AB^\prime \parallel BC$ and $BA^\prime \parallel AC$.$A^\prime B^\prime$ intersects with $\Omega$ at $D,E$.Prove that triangle $CDE$ is isosceles.(A. Kuznetsov)

2024 Nepal TST, P5

Tags: geometry , angle
Let $ABC$ be an acute triangle so that $2BC = AB + AC,$ with incenter $I{}.$ Let $AI{}$ meet $BC{}$ at point $A'.{}$ The perpendicular bisector of $AA'{}$ meets $BI{}$ and $CI{}$ at points $B'{}$ and $C'{}$ respectively. Let $AB'{}$ intersect $(ABC)$ at $X{}$ and let $XI{}$ intersect $AC'{}$ at $X'{}.$ Prove that $2\angle XX'A'=\angle ABC.{}$ [i](Proposed by Kang Taeyoung, South Korea)[/i]

2011 Romania Team Selection Test, 1

Tags: geometry , rotation
Suppose a square of sidelengh $l$ is inside an unit square and does not contain its centre. Show that $l\le 1/2.$ [i]Marius Cavachi[/i]

2018 Iran MO (1st Round), 21

The point $P$ is chosen inside or on the equilateral triangle $ABC$ of side length $1$. The reflection of $P$ with respect to $AB$ is $K$, the reflection of $K$ about $BC$ is $M$, and the reflection of $M$ with respect to $AC$ is $N$. What is the maximum length of $NP$? $\textbf{(A)}\ 2\sqrt 3\qquad\textbf{(B)}\ \sqrt 3\qquad\textbf{(C)}\ \frac{\sqrt 3}{2} \qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 1$

2001 Estonia National Olympiad, 3

A circle with center $I$ and radius $r$ is inscribed in a triangle $ABC$ with a right angle at $C$. Rays $AI$ and $CI$ meet the opposite sides at $D$ and $E$ respectively. Prove that $\frac{1}{AE}+\frac{1}{BD}=\frac{1}{r}$

2013 Romanian Masters In Mathematics, 1

Suppose two convex quadrangles in the plane $P$ and $P'$, share a point $O$ such that, for every line $l$ trough $O$, the segment along which $l$ and $P$ meet is longer then the segment along which $l$ and $P'$ meet. Is it possible that the ratio of the area of $P'$ to the area of $P$ is greater then $1.9$?

Geometry Mathley 2011-12, 10.3

Let $ABC$ be a triangle inscribed in a circle $(O)$. d is the tangent at $A$ of $(O), P$ is an arbitrary point in the plane. $D,E, F$ are the projections of $P$ on $BC,CA,AB$. Let $DE,DF$ intersect the line $d$ at $M,N$ respectively. The circumcircle of triangle $DEF$ meets $CA,AB$ at $K,L$ distinct from $E, F$. Prove that $KN$ meets $LM$ at a point on the circumcircle of triangle $DEF$. Trần Quang Hùng

1977 Spain Mathematical Olympiad, 6

A triangle $ABC$ is considered, and let $D$ be the intersection point of the angle bisector corresponding to angle $A$ with side $BC$. Prove that the circumcircle that passes through $A$ and is tangent to line $BC$ at $D$, it is also tangent to the circle circumscribed around triangle $ABC$.

2006 France Team Selection Test, 2

Given a triangle $ABC$ satisfying $AC+BC=3\cdot AB$. The incircle of triangle $ABC$ has center $I$ and touches the sides $BC$ and $CA$ at the points $D$ and $E$, respectively. Let $K$ and $L$ be the reflections of the points $D$ and $E$ with respect to $I$. Prove that the points $A$, $B$, $K$, $L$ lie on one circle. [i]Proposed by Dimitris Kontogiannis, Greece[/i]

2014 Contests, 3

Let $l$ be the tangent line at the point $P(s,\ t)$ on a circle $C:x^2+y^2=1$. Denote by $m$ the line passing through the point $(1,\ 0)$, parallel to $l$. Let the line $m$ intersects the circle $C$ at $P'$ other than the point $(1,\ 0)$. Note : if $m$ is the line $x=1$, then $P'$ is considered as $(1,\ 0)$. Call $T$ the operation such that the point $P'(s',\ t')$ is obtained from the point $P(s,\ t)$ on $C$. (1) Express $s',\ t'$ as the polynomials of $s$ and $t$ respectively. (2) Let $P_n$ be the point obtained by $n$ operations of $T$ for $P$. For $P\left(\frac{\sqrt{3}}{2},\ \frac{1}{2}\right)$, plot the points $P_1,\ P_2$ and $P_3$. (3) For a positive integer $n$, find the number of $P$ such that $P_n=P$.

2019 Czech-Polish-Slovak Junior Match, 4

Let $k$ be a circle with diameter $AB$. A point $C$ is chosen inside the segment $AB$ and a point $D$ is chosen on $k$ such that $BCD$ is an acute-angled triangle, with circumcentre denoted by $O$. Let $E$ be the intersection of the circle $k$ and the line $BO$ (different from $B$). Show that the triangles $BCD$ and $ECA$ are similar.

2022 Saudi Arabia IMO TST, 2

Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.