This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

LMT Team Rounds 2021+, 7

Kevin has a square piece of paper with creases drawn to split the paper in half in both directions, and then each of the four small formed squares diagonal creases drawn, as shown below. [img]https://cdn.artofproblemsolving.com/attachments/2/2/70d6c54e86856af3a977265a8054fd9b0444b0.png[/img] Find the sum of the corresponding numerical values of figures below that Kevin can create by folding the above piece of paper along the creases. (The figures are to scale.) Kevin cannot cut the paper or rip it in any way. [img]https://cdn.artofproblemsolving.com/attachments/a/c/e0e62a743c00d35b9e6e2f702106016b9e7872.png[/img]

2013 Spain Mathematical Olympiad, 6

Tags: geometry
Let $ABCD$ a convex quadrilateral where: $|AB|+|CD|=\sqrt{2} |AC|$ and $|BC|+|DA|=\sqrt{2} |BD|$ What form does the quadrilateral have?

2023 Princeton University Math Competition, A1 / B3

Tags: geometry
Define a common chord between two intersecting circles to be the line segment connecting their two intersection points. Let $\omega_1,\omega_2,\omega_3$ be three circles of radii $3, 5,$ and $7$, respectively. Suppose they are arranged in such a way that the common chord of $\omega_1$ and $\omega_2$ is a diameter of $\omega_1$, the common chord of $\omega_1$ and $\omega_3$ is a diameter of $\omega_1$, and the common chord of $\omega_2$ and $\omega_3$ is a diameter of $\omega_2$. Compute the square of the area of the triangle formed by the centers of the three circles.

2015 JHMT, 2

Tags: geometry
In a certain right triangle, dropping an altitude to the hypotenuse divides the hypotenuse into two segments of length $2$ and $3$ respectively. What is the area of the triangle?

2000 Baltic Way, 5

Let $ ABC$ be a triangle such that \[ \frac{BC}{AB \minus{} BC}\equal{}\frac{AB \plus{} BC}{AC}\] Determine the ratio $ \angle A : \angle C$.

2020 Kosovo National Mathematical Olympiad, 3

Tags: geometry
Let $ABC$ be a triangle with incenter $I$. The points $D$ and $E$ lie on the segments $CA$ and $BC$ respectively, such that $CD = CE$. Let $F$ be a point on the segment $CD$. Prove that the quadrilateral $ABEF$ is circumscribable if and only if the quadrilateral $DIEF$ is cyclic. [i]Proposed by Dorlir Ahmeti, Albania[/i]

2012 USAMO, 5

Let $P$ be a point in the plane of $\triangle ABC$, and $\gamma$ a line passing through $P$. Let $A', B', C'$ be the points where the reflections of lines $PA, PB, PC$ with respect to $\gamma$ intersect lines $BC, AC, AB$ respectively. Prove that $A', B', C'$ are collinear.

2000 AMC 8, 22

A cube has edge length $2$. Suppose that we glue a cube of edge length $1$ on top of the big cube so that one of its faces rests entirely on the top face of the larger cube. The percent increase in the surface area (sides, top, and bottom) from the original cube to the new solid formed is closest to [asy] draw((0,0)--(2,0)--(3,1)--(3,3)--(2,2)--(0,2)--cycle); draw((2,0)--(2,2)); draw((0,2)--(1,3)); draw((1,7/3)--(1,10/3)--(2,10/3)--(2,7/3)--cycle); draw((2,7/3)--(5/2,17/6)--(5/2,23/6)--(3/2,23/6)--(1,10/3)); draw((2,10/3)--(5/2,23/6)); draw((3,3)--(5/2,3)); [/asy] $\text{(A)}\ 10 \qquad \text{(B)}\ 15 \qquad \text{(C)}\ 17 \qquad \text{(D)}\ 21 \qquad \text{(E)}\ 25$

2014 239 Open Mathematical Olympiad, 7

Tags: geometry
A circle $\omega$ is strictly inside triangle $ABC$. The tangents from $A$ to $\omega$ intersect $BC$ in $A_1,A_2$ define $B_1,B_2,C_1,C_2$ similarly. Prove that if five of six points $A_1,A_2,B_1,B_2,C_1,C_2$ lie on a circle the sixth one lie on the circle too.

2023 LMT Spring, 9

Tags: geometry
In $\vartriangle ABC$, $AB = 13$, $BC = 14,$ and $C A = 15$. Let $E$ and $F$ be the feet of the altitudes from $B$ onto $C A$, and $C$ onto $AB$, respectively. A line $\ell$ is parallel to $EF$ and tangent to the circumcircle of $ABC$ on minor arc $BC$. Let $X$ and $Y$ be the intersections of $\ell$ with $AB$ and $AC$ respectively. Find $X Y$ .

2012 Today's Calculation Of Integral, 847

Consider a right-angled triangle with $AB=1,\ AC=\sqrt{3},\ \angle{BAC}=\frac{\pi}{2}.$ Let $P_1,\ P_2,\ \cdots\cdots,\ P_{n-1}\ (n\geq 2)$ be the points which are closest from $A$, in this order and obtained by dividing $n$ equally parts of the line segment $AB$. Denote by $A=P_0,\ B=P_n$, answer the questions as below. (1) Find the inradius of $\triangle{P_kCP_{k+1}}\ (0\leq k\leq n-1)$. (2) Denote by $S_n$ the total sum of the area of the incircle for $\triangle{P_kCP_{k+1}}\ (0\leq k\leq n-1)$. Let $I_n=\frac{1}{n}\sum_{k=0}^{n-1} \frac{1}{3+\left(\frac{k}{n}\right)^2}$, show that $nS_n\leq \frac {3\pi}4I_n$, then find the limit $\lim_{n\to\infty} I_n$. (3) Find the limit $\lim_{n\to\infty} nS_n$.

2011 Sharygin Geometry Olympiad, 6

Prove that for any nonisosceles triangle $l_1^2>\sqrt3 S>l_2^2$, where $l_1, l_2$ are the greatest and the smallest bisectors of the triangle and $S$ is its area.

1990 Flanders Math Olympiad, 1

Tags: geometry
On the standard unit circle, draw 4 unit circles with centers [0,1],[1,0],[0,-1],[-1,0]. You get a figure as below, find the area of the colored part. [img]http://www.mathlinks.ro/Forum/album_pic.php?pic_id=277[/img]

1970 All Soviet Union Mathematical Olympiad, 129

Given a circle, its diameter $[AB]$ and a point $C$ on it. Construct (with the help of compasses and ruler) two points $X$ and $Y$, that are symmetric with respect to $(AB)$ line, such that $(YC)$ is orthogonal to $(XA)$.

1973 AMC 12/AHSME, 9

Tags: geometry
In $ \triangle ABC$ with right angle at $ C$, altitude $ CH$ and median $ CM$ trisect the right angle. If the area of $ \triangle CHM$ is $ K$, then the area of $ \triangle ABC$ is $ \textbf{(A)}\ 6K \qquad \textbf{(B)}\ 4\sqrt3\ K \qquad \textbf{(C)}\ 3\sqrt3\ K \qquad \textbf{(D)}\ 3K \qquad \textbf{(E)}\ 4K$

2002 Bulgaria National Olympiad, 4

Let $I$ be the incenter of a non-equilateral triangle $ABC$ and $T_1$, $T_2$, and $T_3$ be the tangency points of the incircle with the sides $BC$, $CA$ and $AB$, respectively. Prove that the orthocenter of triangle $T_1T_2T_3$ lies on the line $OI$, where $O$ is the circumcenter of triangle $ABC$. [i]Proposed by Georgi Ganchev[/i]

1999 Singapore Senior Math Olympiad, 2

In $\vartriangle ABC$ with edges $a, b$ and $c$, suppose $b + c = 6$ and the area $S$ is $a^2 - (b -c)^2$. Find the value of $\cos A$ and the largest possible value of $S$.

1997 Tournament Of Towns, (557) 2

Let $a$ and $b$ be two sides of a triangle. How should the third side $c$ be chosen so that the points of contact of the incircle and the excircle with side $c$ divide that side into three equal segments? (The excircle corresponding to the side $c$ is the circle which is tangent to the side $c$ and to the extensions of the sides $a$ and $b$.) (Folklore)

1999 Ukraine Team Selection Test, 1

A triangle $ABC$ is given. Points $E,F,G$ are arbitrarily selected on the sides $AB,BC,CA$, respectively, such that $AF\perp EG$ and the quadrilateral $AEFG$ is cyclic. Find the locus of the intersection point of $AF$ and $EG$.

2012-2013 SDML (Middle School), 15

Tags: geometry
Pentagon $ABCDE$ is inscribed in a circle such that $ACDE$ is a square with area $12$. What is the largest possible area of pentagon $ABCDE$? $\text{(A) }9+3\sqrt{2}\qquad\text{(B) }13\qquad\text{(C) }12+\sqrt{2}\qquad\text{(D) }14\qquad\text{(E) }12+\sqrt{6}-\sqrt{3}$

2021 Czech-Polish-Slovak Junior Match, 1

Consider a trapezoid $ABCD$ with bases $AB$ and $CD$ satisfying $| AB | > | CD |$. Let $M$ be the midpoint of $AB$. Let the point $P$ lie inside $ABCD$ such that $| AD | = | PC |$ and $| BC | = | PD |$. Prove that if $| \angle CMD | = 90^o$, then the quadrilaterals $AMPD$ and $BMPC$ have the same area.

2016 Latvia National Olympiad, 2

An acute triangle $ABC$ ($AB > AC$) has circumcenter $O$, but $D$ is the midpoint of $BC$. Circle with diameter $AD$ intersects sides $AB$ and $AC$ in $E$ and $F$ respectively. On segment $EF$ pick a point $M$ so that $DM \parallel AO$. Prove that triangles $ABD$ and $FDM$ are similar.

1959 AMC 12/AHSME, 22

The line joining the midpoints of the diagonals of a trapezoid has length $3$. If the longer base is $97$, then the shorter base is: $ \textbf{(A)}\ 94 \qquad\textbf{(B)}\ 92\qquad\textbf{(C)}\ 91\qquad\textbf{(D)}\ 90\qquad\textbf{(E)}\ 89 $

1994 All-Russian Olympiad, 7

A trapezoid $ABCD$ ($AB ///CD$) has the property that there are points $P$ and $Q$ on sides $AD$ and $BC$ respectively such that $\angle APB = \angle CPD$ and $\angle AQB = \angle CQD$. Show that the points $P$ and $Q$ are equidistant from the intersection point of the diagonals of the trapezoid. (M. Smurov)

2007 Iran Team Selection Test, 3

$O$ is a point inside triangle $ABC$ such that $OA=OB+OC$. Suppose $B',C'$ be midpoints of arcs $\overarc{AOC}$ and $AOB$. Prove that circumcircles $COC'$ and $BOB'$ are tangent to each other.