This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2022 MMATHS, 2

Triangle $ABC$ has $AB = 3$, $BC = 4$, and $CA = 5$. Points $D$, $E$, $F$, $G$, $H$, and $I$ are the reflections of $A$ over $B$, $B$ over $A$, $B$ over $C$, $C$ over $B$, $C$ over $A$, and $A$ over $C$, respectively. Find the area of hexagon $EFIDGH$.

2020 Baltic Way, 14

Tags: geometry
An acute triangle $ABC$ is given and let $H$ be its orthocenter. Let $\omega$ be the circle through $B$, $C$ and $H$, and let $\Gamma$ be the circle with diameter $AH$. Let $X\neq H$ be the other intersection point of $\omega$ and $\Gamma$, and let $\gamma$ be the reflection of $\Gamma$ over $AX$. Suppose $\gamma$ and $\omega$ intersect again at $Y\neq X$, and line $AH$ and $\omega$ intersect again at $Z \neq H$. Show that the circle through $A,Y,Z$ passes through the midpoint of segment $BC$.

Estonia Open Senior - geometry, 2009.1.3

Tags: circles , geometry
Three circles in a plane have the sides of a triangle as their diameters. Prove that there is a point that is in the interior of all three circles.

Mid-Michigan MO, Grades 7-9, 2005

[b]p1.[/b] Prove that no matter what digits are placed in the four empty boxes, the eight-digit number $9999\Box\Box\Box\Box$ is not a perfect square. [b]p2.[/b] Prove that the number $m/3+m^2/2+m^3/6$ is integral for all integral values of $m$. [b]p3.[/b] An elevator in a $100$ store building has only two buttons: UP and DOWN. The UP button makes the elevator go $13$ floors up, and the DOWN button makes it go $8$ floors down. Is it possible to go from the $13$th floor to the $8$th floor? [b]p4.[/b] Cut the triangle shown in the picture into three pieces and rearrange them into a rectangle. (Pieces can not overlap.) [img]https://cdn.artofproblemsolving.com/attachments/4/b/ca707bf274ed54c1b22c4f65d3d0b0a5cfdc56.png[/img] [b]p5.[/b] Two players Tom and Sid play the following game. There are two piles of rocks, $7$ rocks in the first pile and $9$ rocks in the second pile. Each of the players in his turn can take either any amount of rocks from one pile or the same amount of rocks from both piles. The winner is the player who takes the last rock. Who does win in this game if Tom starts the game? [b]p6.[/b] In the next long multiplication example each letter encodes its own digit. Find these digits. $\begin{tabular}{ccccc} & & & a & b \\ * & & & c & d \\ \hline & & c & e & f \\ + & & a & b & \\ \hline & c & f & d & f \\ \end{tabular}$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 Turkey MO (2nd Round), 2

Tags: geometry
Let $P$ be a point in the interior of the triangle $ABC$. The lines $AP$, $BP$, and $CP$ intersect the sides $BC$, $CA$, and $AB$ at $D,E$, and $F$, respectively. A point $Q$ is taken on the ray $[BE$ such that $E\in [BQ]$ and $m(\widehat{EDQ})=m(\widehat{BDF})$. If $BE$ and $AD$ are perpendicular, and $|DQ|=2|BD|$, prove that $m(\widehat{FDE})=60^\circ$.

2009 German National Olympiad, 1

Find all non-negative real numbers $a$ such that the equation \[ \sqrt[3]{1+x}+\sqrt[3]{1-x}=a \] has at least one real solution $x$ with $0 \leq x \leq 1$. For all such $a$, what is $x$?

2018 ELMO Shortlist, 4

Tags: geometry
Let $ABCDEF$ be a hexagon inscribed in a circle $\Omega$ such that triangles $ACE$ and $BDF$ have the same orthocenter. Suppose that segments $BD$ and $DF$ intersect $CE$ at $X$ and $Y$, respectively. Show that there is a point common to $\Omega$, the circumcircle of $DXY$, and the line through $A$ perpendicular to $CE$. [i]Proposed by Michael Ren and Vincent Huang[/i]

2006 Tournament of Towns, 3

Tags: geometry
On sides $AB$ and $BC$ of an acute triangle $ABC$ two congruent rectangles $ABMN$ and $LBCK$ are constructed (outside of the triangle), so that $AB = LB$. Prove that straight lines $AL, CM$ and $NK$ intersect at the same point. [i](5 points)[/i]

1979 Chisinau City MO, 173

The inner angles of the pentagon inscribed in the circle are equal to each other. Prove that this pentagon is regular.

1993 Irish Math Olympiad, 1

Show that among any five points $ P_1,...,P_5$ with integer coordinates in the plane, there exists at least one pair $ (P_i,P_j)$, with $ i \not\equal{} j$ such that the segment $ P_i P_j$ contains a point $ Q$ with integer coordinates other than $ P_i, P_j$.

2008 Sharygin Geometry Olympiad, 16

(A.Zaslavsky, 9--11) Given two circles. Their common external tangent is tangent to them at points $ A$ and $ B$. Points $ X$, $ Y$ on these circles are such that some circle is tangent to the given two circles at these points, and in similar way (external or internal). Determine the locus of intersections of lines $ AX$ and $ BY$.

1982 Swedish Mathematical Competition, 3

Show that there is a point $P$ inside the quadrilateral $ABCD$ such that the triangles $PAB$, $PBC$, $PCD$, $PDA$ have equal area. Show that $P$ must lie on one of the diagonals.

1999 Brazil Team Selection Test, Problem 2

In a triangle $ABC$, the bisector of the angle at $A$ of a triangle $ABC$ intersects the segment $BC$ and the circumcircle of $ABC$ at points $A_1$ and $A_2$, respectively. Points $B_1,B_2,C_1,C_2$ are analogously defined. Prove that $$\frac{A_1A_2}{BA_2+CA_2}+\frac{B_1B_2}{CB_2+AB_2}+\frac{C_1C_2}{AC_2+BC_2}\ge\frac34.$$

2021 Korea - Final Round, P5

The incenter and $A$-excenter of $\triangle{ABC}$ is $I$ and $O$. The foot from $A,I$ to $BC$ is $D$ and $E$. The intersection of $AD$ and $EO$ is $X$. The circumcenter of $\triangle{BXC}$ is $P$. Show that the circumcircle of $\triangle{BPC}$ is tangent to the $A$-excircle if $X$ is on the incircle of $\triangle{ABC}$.

2023 Iranian Geometry Olympiad, 4

Let $ABCD$ be a convex quadrilateral. Let $E$ be the intersection of its diagonals. Suppose that $CD = BC = BE$. Prove that $AD + DC\ge AB$. [i]Proposed by Dominik Burek - Poland[/i]

2020 JHMT, 4

Tags: geometry
Quadrilateral $ABCD$ is inscribed in a circle of radius $6$. If $\angle BDA = 40^o$ and $AD = 6$, what is the measure of $\angle BAD$ in degrees?

2003 Italy TST, 1

The incircle of a triangle $ABC$ touches the sides $AB,BC,CA$ at points $D,E,F$ respectively. The line through $A$ parallel to $DF$ meets the line through $C$ parallel to $EF$ at $G$. $(a)$ Prove that the quadrilateral $AICG$ is cyclic. $(b)$ Prove that the points $B,I,G$ are collinear.

2000 IMO Shortlist, 7

Ten gangsters are standing on a flat surface, and the distances between them are all distinct. At twelve o’clock, when the church bells start chiming, each of them fatally shoots the one among the other nine gangsters who is the nearest. At least how many gangsters will be killed?

2010 All-Russian Olympiad, 1

Let $a \neq b a,b \in \mathbb{R}$ such that $(x^2+20ax+10b)(x^2+20bx+10a)=0$ has no roots for $x$. Prove that $20(b-a)$ is not an integer.

2016 Saudi Arabia Pre-TST, 1.2

Let $ABC$ be a non isosceles triangle inscribed in a circle $(O)$ and $BE, CF$ are two angle bisectors intersect at $I$ with $E$ belongs to segment $AC$ and $F$ belongs to segment $AB$. Suppose that $BE, CF$ intersect $(O)$ at $M,N$ respectively. The line $d_1$ passes through $M$ and perpendicular to $BM$ intersects $(O)$ at the second point $P,$ the line $d_2$ passes through $N$ and perpendicular to $CN$ intersect $(O)$ at the second point $Q$. Denote $H, K$ are two midpoints of $MP$ and $NQ$ respectively. 1. Prove that triangles $IEF$ and $OKH$ are similar. 2. Suppose that S is the intersection of two lines $d_1$ and $d_2$. Prove that $SO$ is perpendicular to $EF$.

2016 Singapore MO Open, 1

Let $D$ be a point in the interior of $\triangle{ABC}$ such that $AB=ab$, $AC=ac$, $BC=bc$, $AD=ad$, $BD=bd$, $CD=cd$. Show that $\angle{ABD}+\angle{ACD}=60^{\circ}$. Source: 2016 Singapore Mathematical Olympiad (Open) Round 2, Problem 1

1985 IMO Longlists, 46

Let $C$ be the curve determined by the equation $y = x^3$ in the rectangular coordinate system. Let $t$ be the tangent to $C$ at a point $P$ of $C$; t intersects $C$ at another point $Q$. Find the equation of the set $L$ of the midpoints $M$ of $PQ$ as $P$ describes $C$. Is the correspondence associating $P$ and $M$ a bijection of $C$ on $L$ ? Find a similarity that transforms $C$ into $L.$

2019 SAFEST Olympiad, 1

Let $ABC$ be an isosceles triangle with $AB = AC$. Let $AD$ be the diameter of the circumcircle of $ABC$ and let $P$ be a point on the smaller arc $BD$. The line $DP$ intersects the rays $AB$ and $AC$ at points $M$ and $N$, respectively. The line $AD$ intersects the lines $BP$ and $CP$ at points $Q$ and $R$, respectively. Prove that the midpoint of $MN$ lies on the circumcircle of $PQR$

2015 Iran MO (3rd round), 4

Tags: incenter , geometry
Let $ABC$ be a triangle with incenter $I$. Let $K$ be the midpoint of $AI$ and $BI\cap \odot(\triangle ABC)=M,CI\cap \odot(\triangle ABC)=N$. points $P,Q$ lie on $AM,AN$ respectively such that $\angle ABK=\angle PBC,\angle ACK=\angle QCB$. Prove that $P,Q,I$ are collinear.

2008 Iran MO (3rd Round), 3

Let $ P$ be a regular polygon. A regular sub-polygon of $ P$ is a subset of vertices of $ P$ with at least two vertices such that divides the circumcircle to equal arcs. Prove that there is a subset of vertices of $ P$ such that its intersection with each regular sub-polygon has even number of vertices.