Found problems: 25757
2012 Federal Competition For Advanced Students, Part 1, 1
Determine all functions $f: \mathbb{Z}\to\mathbb{Z}$ satisfying the following property: For each pair of integers $m$ and $n$ (not necessarily distinct), $\mathrm{gcd}(m, n)$ divides $f(m) + f(n)$.
Note: If $n\in\mathbb{Z}$, $\mathrm{gcd}(m, n)=\mathrm{gcd}(|m|, |n|)$ and $\mathrm{gcd}(n, 0)=n$.
2012 BMT Spring, round 5
[b]p1.[/b] Let $n$ be the number so that $1 - 2 + 3 - 4 + ... - (n - 1) + n = 2012$. What is $4^{2012}$ (mod $n$)?
[b]p2. [/b]Consider three unit squares placed side by side. Label the top left vertex $P$ and the bottom four vertices $A,B,C,D$ respectively. Find $\angle PBA + \angle PCA + \angle PDA$.
[b]p3.[/b] Given $f(x) = \frac{3}{x-1}$ , then express $\frac{9(x^2-2x+1)}{x^2-8x+16}$ entirely in terms of $f(x)$. In other words, $x$ should not be in
your answer, only $f(x)$.
[b]p4.[/b] Right triangle with right angle $B$ and integer side lengths has $BD$ as the altitude. $E$ and $F$ are the incenters of triangles $ADB$ and $BDC$ respectively. Line $EF$ is extended and intersects $BC$ at $G$, and $AB$ at $H$. If $AB = 15$ and $BC = 8$, find the area of triangle $BGH$.
[b]p5.[/b] Let $a_1, a_2, ..., a_n$ be a sequence of real numbers. Call a $k$-inversion $(0 < k\le n)$ of a sequence to be indices $i_1, i_2, .. , i_k$ such that $i_1 < i_2 < .. < i_k$ but $a_{i1} > a_{i2} > ...> a_{ik}$ . Calculate the expected number of $6$-inversions in a random permutation of the set $\{1, 2, ... , 10\}$.
[b]p6.[/b] Chell is given a strip of squares labeled $1, .. , 6$ all placed side to side. For each $k \in {1, ..., 6}$, she then chooses one square at random in $\{1, ..., k\}$ and places a Weighted Storage Cube there. After she has placed all $6$ cubes, she computes her score as follows: For each square, she takes the number of cubes in the pile and then takes the square (i.e. if there were 3 cubes in a square, her score for that square would be $9$). Her overall score is the sum of the scores of each square. What is the expected value of her score?
PS. You had better use hide for answers.
1966 AMC 12/AHSME, 19
Let $s_1$ be the sum of the first $n$ terms of the arithmetic sequence $8,12,\cdots$ and let $s_2$ be the sum of the first $n$ terms of the arithmetic sequence $17,19\cdots$. Assume $n\ne 0$. Then $s_1=s_2$ for:
$\text{(A)} \ \text{no value of n} \qquad \text{(B)} \ \text{one value of n} \qquad \text{(C)} \ \text{two values of n}$
$\text{(D)} \ \text{four values of n} \qquad \text{(E)} \ \text{more than four values of n}$
2008 Iran Team Selection Test, 12
In the acute-angled triangle $ ABC$, $ D$ is the intersection of the altitude passing through $ A$ with $ BC$ and $ I_a$ is the excenter of the triangle with respect to $ A$. $ K$ is a point on the extension of $ AB$ from $ B$, for which $ \angle AKI_a\equal{}90^\circ\plus{}\frac 34\angle C$. $ I_aK$ intersects the extension of $ AD$ at $ L$. Prove that $ DI_a$ bisects the angle $ \angle AI_aB$ iff $ AL\equal{}2R$. ($ R$ is the circumradius of $ ABC$)
1995 AMC 12/AHSME, 26
In the figure, $\overline{AB}$ and $\overline{CD}$ are diameters of the circle with center $O$, $\overline{AB} \perp \overline{CD}$, and chord $\overline{DF}$ intersects $\overline{AB}$ at $E$. If $DE = 6$ and $EF = 2$, then the area of the circle is
[asy]
size(120); defaultpen(linewidth(0.7));
pair O=origin, A=(-5,0), B=(5,0), C=(0,5), D=(0,-5), F=5*dir(40), E=intersectionpoint(A--B, F--D);
draw(Circle(O, 5));
draw(A--B^^C--D--F);
dot(O^^A^^B^^C^^D^^E^^F);
markscalefactor=0.05;
draw(rightanglemark(B, O, D));
label("$A$", A, dir(O--A));
label("$B$", B, dir(O--B));
label("$C$", C, dir(O--C));
label("$D$", D, dir(O--D));
label("$F$", F, dir(O--F));
label("$O$", O, NW);
label("$E$", E, SE);[/asy]
$\textbf{(A)}\ 23\pi \qquad
\textbf{(B)}\ \dfrac{47}{2}\pi \qquad
\textbf{(C)}\ 24\pi \qquad
\textbf{(D)}\ \dfrac{49}{2}\pi \qquad
\textbf{(E)}\ 25\pi$
1997 Polish MO Finals, 3
In a tetrahedron $ABCD$, the medians of the faces $ABD$, $ACD$, $BCD$ from $D$ make equal angles with the corresponding edges $AB$, $AC$, $BC$. Prove that each of these faces has area less than or equal to the sum of the areas of the other two faces.
[hide="Comment"][i]Equivalent version of the problem:[/i] $ABCD$ is a tetrahedron. $DE$, $DF$, $DG$ are medians of triangles $DBC$, $DCA$, $DAB$. The angles between $DE$ and $BC$, between $DF$ and $CA$, and between $DG$ and $AB$ are equal. Show that: area $DBC$ $\leq$ area $DCA$ + area $DAB$. [/hide]
2014 LMT, Team Round
[b]p1.[/b] Let $A\% B = BA - B - A + 1$. How many digits are in the number $1\%(3\%(3\%7))$ ?
[b]p2. [/b]Three circles, of radii $1, 2$, and $3$ are all externally tangent to each other. A fourth circle is drawn which passes through the centers of those three circles. What is the radius of this larger circle?
[b]p3.[/b] Express $\frac13$ in base $2$ as a binary number. (Which, similar to how demical numbers have a decimal point, has a “binary point”.)
[b]p4. [/b] Isosceles trapezoid $ABCD$ with $AB$ parallel to $CD$ is constructed such that $DB = DC$. If $AD = 20$, $AB = 14$, and $P$ is the point on $AD$ such that $BP + CP$ is minimized, what is $AP/DP$?
[b]p5.[/b] Let $f(x) = \frac{5x-6}{x-2}$ . Define an infinite sequence of numbers $a_0, a_1, a_2,....$ such that $a_{i+1} = f(a_i)$ and $a_i$ is always an integer. What are all the possible values for $a_{2014}$ ?
[b]p6.[/b] $MATH$ and $TEAM$ are two parallelograms. If the lengths of $MH$ and $AE$ are $13$ and $15$, and distance from $AM$ to $T$ is $12$, find the perimeter of $AMHE$.
[b]p7.[/b] How many integers less than $1000$ are there such that $n^n + n$ is divisible by $5$ ?
[b]p8.[/b] $10$ coins with probabilities of $1, 1/2, 1/3 ,..., 1/10$ of coming up heads are flipped. What is the probability that an odd number of them come up heads?
[b]p9.[/b] An infinite number of coins with probabilities of $1/4, 1/9, 1/16, ...$ of coming up heads are all flipped. What is the probability that exactly $ 1$ of them comes up heads?
[b]p10.[/b] Quadrilateral $ABCD$ has side lengths $AB = 10$, $BC = 11$, and $CD = 13$. Circles $O_1$ and $O_2$ are inscribed in triangles $ABD$ and $BDC$. If they are both tangent to $BD$ at the same point $E$, what is the length of $DA$ ?
PS. You had better use hide for answers.
2000 Switzerland Team Selection Test, 13
The incircle of a triangle $ABC$ touches the sides $AB,BC,CA$ at points $D,E,F$ respectively. Let $P$ be an internal point of triangle $ABC$ such that the incircle of triangle $ABP$ touches $AB$ at $D$ and the sides $AP$ and $BP$ at $Q$ and $R$. Prove that the points $E,F,R,Q$ lie on a circle.
2011 Turkey Team Selection Test, 1
Let $D$ be a point different from the vertices on the side $BC$ of a triangle $ABC.$ Let $I, \: I_1$ and $I_2$ be the incenters of the triangles $ABC, \: ABD$ and $ADC,$ respectively. Let $E$ be the second intersection point of the circumcircles of the triangles $AI_1I$ and $ADI_2,$ and $F$ be the second intersection point of the circumcircles of the triangles $AII_2$ and $AI_1D.$ Prove that if $AI_1=AI_2,$ then
\[ \frac{EI}{FI} \cdot \frac{ED}{FD}=\frac{{EI_1}^2}{{FI_1}^2}.\]
2014 Balkan MO Shortlist, G3
Let $\triangle ABC$ be an isosceles.$(AB=AC)$.Let $D$ and $E$ be two points on the side $BC$ such that $D\in BE$,$E\in DC$ and $2\angle DAE = \angle BAC$.Prove that we can construct a triangle $XYZ$ such that $XY=BD$,$YZ=DE$ and $ZX=EC$.Find $\angle BAC + \angle YXZ$.
2015 AMC 8, 2
Point $O$ is the center of the regular octagon $ABCDEFGH$, and $X$ is the midpoint of the side $\overline{AB}.$ What fraction of the area of the octagon is shaded?
$\textbf{(A) }\frac{11}{32} \qquad\textbf{(B) }\frac{3}{8} \qquad\textbf{(C) }\frac{13}{32} \qquad\textbf{(D) }\frac{7}{16}\qquad \textbf{(E) }\frac{15}{32}$
[asy]
pair A,B,C,D,E,F,G,H,O,X;
A=dir(45);
B=dir(90);
C=dir(135);
D=dir(180);
E=dir(-135);
F=dir(-90);
G=dir(-45);
H=dir(0);
O=(0,0);
X=midpoint(A--B);
fill(X--B--C--D--E--O--cycle,rgb(0.75,0.75,0.75));
draw(A--B--C--D--E--F--G--H--cycle);
dot("$A$",A,dir(45));
dot("$B$",B,dir(90));
dot("$C$",C,dir(135));
dot("$D$",D,dir(180));
dot("$E$",E,dir(-135));
dot("$F$",F,dir(-90));
dot("$G$",G,dir(-45));
dot("$H$",H,dir(0));
dot("$X$",X,dir(135/2));
dot("$O$",O,dir(0));
draw(E--O--X);
[/asy]
2008 ITest, 96
Triangle $ABC$ has $\angle A=90^\circ$, $\angle B=60^\circ$, and $AB=8$, and a point $P$ is chosen inside the triangle. The interior angle bisectors $\ell_A$, $\ell_B$, and $\ell_C$ of respective angles $PAB$, $PBC$, and $PCA$ intersect pairwise at $X=\ell_A\cap\ell_B$, $Y=\ell_B\cap\ell_C$, and $Z=\ell_C\cap\ell_A$. If triangles $ABC$ and $XYZ$ are directly similar, then the area of $\triangle XYZ$ may be written in the form $\tfrac{p\sqrt q-r\sqrt s}t$, where $p,q,r,s,t$ are positive integers, $q$ and $s$ are not divisible by the square of any prime, and $\gcd(t,r,p)=1$. Compute $p+q+r+s+t$.
2010 Oral Moscow Geometry Olympiad, 2
Quadrangle $ABCD$ is inscribed in a circle. The perpendicular from the vertex $C$ on the bisector of $\angle ABD$ intersects the line $AB$ at the point $C_1$. The perpendicular from the vertex $B$ on the bisector of $\angle ACD$ intersects the line $CD$ at the point $B_1$. Prove that $B_1C_1 \parallel AD$.
2015 May Olympiad, 3
In the quadrilateral $ABCD$, we have $\angle C$ is triple of $\angle A$, let $P$ be a point in the side $AB$ such that
$\angle DPA = 90º$ and let $Q$ be a point in the segment $DA$ where $\angle BQA = 90º$ the segments $DP$ and $CQ$ intersects in $O$ such that $BO = CO = DO$, find $\angle A$ and $\angle C$.
MMPC Part II 1958 - 95, 1984
[b]p1.[/b] For what integers $n$ is $2^6 + 2^9 + 2^n$ the square of an integer?
[b]p2.[/b] Two integers are chosen at random (independently, with repetition allowed) from the set $\{1,2,3,...,N\}$. Show that the probability that the sum of the two integers is even is not less than the probability that the sum is odd.
[b]p3.[/b] Let $X$ be a point in the second quadrant of the plane and let $Y$ be a point in the first quadrant. Locate the point $M$ on the $x$-axis such that the angle $XM$ makes with the negative end of the $x$-axis is twice the angle $YM$ makes with the positive end of the $x$-axis.
[b]p4.[/b] Let $a,b$ be positive integers such that $a \ge b \sqrt3$. Let $\alpha^n = (a + b\sqrt3)^n = a_n + b_n\sqrt3$ for $n = 1,2,3,...$.
i. Prove that $\lim_{n \to + \infty} \frac{a_n}{b_n}$ exists.
ii. Evaluate this limit.
[b]p5.[/b] Suppose $m$ and $n$ are the hypotenuses are of Pythagorean triangles, i.e,, there are positive integers $a,b,c,d$, so that $m^2 = a^2 + b^2$ and $n^2= c^2 + d^2$. Show than $mn$ is the hypotenuse of at least two distinct Pythagorean triangles.
Hint: you may not assume that the pair $(a,b)$ is different from the pair $(c,d)$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
Cono Sur Shortlist - geometry, 1993.13
Determine the real values of $x$ such that the triangle with sides $5$, $8$, and $x$ is obtuse.
2015 Azerbaijan IMO TST, 1
Let $\omega$ be the circumcircle of an acute-angled triangle $ABC$. The lines tangent to $\omega$ at the points $A$ and $B$ meet at $K$. The line passing through $K$ and parallel to $BC$ intersects the side $AC$ at $S$. Prove that $BS=CS$
2012 Princeton University Math Competition, B7
Assume the earth is a perfect sphere with a circumference of $60$ units. A great circle is a circle on a sphere whose center is also the center of the sphere. There are three train tracks on three great circles of the earth. One is along the equator and the other two pass through the poles, intersecting at a $90$ degree angle. If each track has a train of length $L$ traveling at the same speed, what is the maximum value of $L$ such that the trains can travel without crashing?
2007 AIME Problems, 8
A rectangular piece of of paper measures 4 units by 5 units. Several lines are drawn parallel to the edges of the paper. A rectangle determined by the intersections of some of these lines is called [i]basic [/i]if
(i) all four sides of the rectangle are segments of drawn line segments, and
(ii) no segments of drawn lines lie inside the rectangle.
Given that the total length of all lines drawn is exactly 2007 units, let $N$ be the maximum possible number of basic rectangles determined. Find the remainder when $N$ is divided by 1000.
2024 India IMOTC, 21
Let $\Delta_0$ be an equilateral triangle with incircle $\omega$. A point on $\omega$ is reflected in the sides of $\Delta_0$ to obtain a new triangle $\Delta_1$. The same point is then reflected over the sides of $\Delta_1$ to obtain another triangle $\Delta_2$. Prove that the circumcircle of $\Delta_2$ is tangent to $\omega$.
[i]Proposed by Siddharth Choppara[/i]
2017 Bosnia and Herzegovina EGMO TST, 2
It is given triangle $ABC$ and points $P$ and $Q$ on sides $AB$ and $AC$, respectively, such that $PQ\mid\mid BC$. Let $X$ and $Y$ be intersection points of lines $BQ$ and $CP$ with circumcircle $k$ of triangle $APQ$, and $D$ and $E$ intersection points of lines $AX$ and $AY$ with side $BC$. If $2\cdot DE=BC$, prove that circle $k$ contains intersection point of angle bisector of $\angle BAC$ with $BC$
2014 Purple Comet Problems, 7
Inside the $7\times8$ rectangle below, one point is chosen a distance $\sqrt2$ from the left side and a distance $\sqrt7$ from the bottom side. The line segments from that point to the four vertices of the rectangle are drawn. Find the area of the shaded region.
[asy]
import graph;
size(4cm);
pair A = (0,0);
pair B = (9,0);
pair C = (9,7);
pair D = (0,7);
pair P = (1.5,3);
draw(A--B--C--D--cycle,linewidth(1.5));
filldraw(A--B--P--cycle,rgb(.76,.76,.76),linewidth(1.5));
filldraw(C--D--P--cycle,rgb(.76,.76,.76),linewidth(1.5));
[/asy]
2019 ASDAN Math Tournament, 5
Trapezoid $ABCD$ has properties $AB \parallel CD$, $AB = 15$, $CD = 27$, and $BC = AD = 10$. A smaller trapezoid $EF GH$ is drawn within$ ABCD$ with $AB\parallel EF$, $BC\parallel F G$, $CD\parallel GH$, and $DA\parallel HE$ such that each edge in $ABCD$ is a distance $2$ away from the corresponding edge in $EF GH$. Compute the area of $EF GH$.
2012 JHMT, 9
Let $ABC$ be a triangle with incircle $O$ and side lengths $5, 8$, and $9$. Consider the other tangent line to $O$ parallel to $BC$, which intersects $AB$ at $B_a$ and $AC$ at $C_a$. Let $r_a$ be the inradius of triangle $AB_aC_a$, and define $r_b$ and $r_c$ similarly. Find $r_a + r_b + r_c$.
1997 All-Russian Olympiad Regional Round, 9.7
Given triangle $ABC$. Point $B_1$ bisects the length of the broken line $ABC$ (composed of segments $AB$ and $BC$), point $C_1$ bisects the length of the broken line$ACB$, point $A_1$ bisects the length of of the broken line $CAB$. Through points $A_1$, $B_1$ and $C_1$ straight lines $\ell_A$ ,$\ell_B$, $\ell_C$ are drawn parallel to the bisectors angles $BAC$, $ABC$ and $ACB$ respectively. Prove that the lines $\ell_A$, $\ell_B$ and $\ell_C$ intersect at one point.