Found problems: 25757
1996 Irish Math Olympiad, 5
Show how to dissect a square into at most five pieces in such a way that the pieces can be reassembled to form three squares of (pairwise) distinct areas.
1998 Moldova Team Selection Test, 3
Prove that in a triangle
$Sum of medians >\frac{3}{4}(perimeter of triangle )$
Ukraine Correspondence MO - geometry, 2005.11
Let the circle $\omega$ be circumscribed around the triangle $\vartriangle ABC$ with right angle $\angle A$. Tangent to the circle $\omega$ at point $A$ intersects the line $BC$ at point $D$. Point $E$ is symmetric to $A$ with respect to the line $BC$. Let $K$ be the foot of the perpendicular drawn from point $A$ on $BE$, $L$ the midpoint of $AK$. The line $BL$ intersects the circle $\omega$ for the second time at the point $N$. Prove that the line $BD$ is tangent to the circle circumscribed around the triangle $\vartriangle ADM$.
2010 N.N. Mihăileanu Individual, 3
Let $ Q $ be a point, $ H,O $ be the orthocenter and circumcenter, respectively, of a triangle $ ABC, $ and $ D,E,F, $ be the symmetric points of $ Q $ with respect to $ A,B,C, $ respectively. Also, $ M,N,P $ are the middle of the segments $ AE,BF,CD, $ and $ G,G',G'' $ are the centroids of $ ABC,MNP,DEF, $ respectively. Prove the following propositions:
[b]a)[/b] $ \frac{1}{2}\overrightarrow{OG} =\frac{1}{3}\overrightarrow{OG'}=\frac{1}{4}\overrightarrow{OG''} $
[b]b)[/b] $ Q=O\implies \overrightarrow{OG'} =\overrightarrow{G'H} $
[b]c)[/b] $ Q=H\implies G'=O $
[i]Cătălin Zîrnă[/i]
2014 AMC 12/AHSME, 19
A sphere is inscribed in a truncated right circular cone as shown. The volume of the truncated cone is twice that of the sphere. What is the ratio of the radius of the bottom base of the truncated cone to the radius of the top base of the truncated cone?
[asy]
real r=(3+sqrt(5))/2;
real s=sqrt(r);
real Brad=r;
real brad=1;
real Fht = 2*s;
import graph3;
import solids;
currentprojection=orthographic(1,0,.2);
currentlight=(10,10,5);
revolution sph=sphere((0,0,Fht/2),Fht/2);
//draw(surface(sph),green+white+opacity(0.5));
//triple f(pair t) {return (t.x*cos(t.y),t.x*sin(t.y),t.x^(1/n)*sin(t.y/n));}
triple f(pair t) {
triple v0 = Brad*(cos(t.x),sin(t.x),0);
triple v1 = brad*(cos(t.x),sin(t.x),0)+(0,0,Fht);
return (v0 + t.y*(v1-v0));
}
triple g(pair t) {
return (t.y*cos(t.x),t.y*sin(t.x),0);
}
surface sback=surface(f,(3pi/4,0),(7pi/4,1),80,2);
surface sfront=surface(f,(7pi/4,0),(11pi/4,1),80,2);
surface base = surface(g,(0,0),(2pi,Brad),80,2);
draw(sback,rgb(0,1,0));
draw(sfront,rgb(.3,1,.3));
draw(base,rgb(.4,1,.4));
draw(surface(sph),rgb(.3,1,.3));
[/asy]
$ \textbf {(A) } \dfrac {3}{2} \qquad \textbf {(B) } \dfrac {1+\sqrt{5}}{2} \qquad \textbf {(C) } \sqrt{3} \qquad \textbf {(D) } 2 \qquad \textbf {(E) } \dfrac {3+\sqrt{5}}{2} $
2024 Belarusian National Olympiad, 8.4
In a convex hexagon $ABCDEF$ equalities $\angle ABC= \angle CDE= \angle EFA$ hold, and the angle bisectors of angles $ABC$, $CDE$ and $EFA$ intersect in one point. Rays $AB$ and $DC$ intersect at $P$, rays $BC$ and $ED$ - at $Q$, rays $CD$ and $FE$ - at $R$, rays $DE$ and $AF$ - at $S$.
Prove that $PR=QS$
[i]M. Zorka[/i]
2018 May Olympiad, 4
In a parallelogram $ABCD$, let $M$ be the point on the $BC$ side such that $MC = 2BM$ and let $N$ be the point of side $CD$ such that $NC = 2DN$. If the distance from point $B$ to the line $AM$ is $3$, calculate the distance from point $N$ to the line $AM$.
V Soros Olympiad 1998 - 99 (Russia), 10.4
Let $M$ be the midpoint of side $BC$ of triangle $ABC$, $Q$ the point of intersection of its angle bisectors. It is known that $MQ=QA$. Find the smallest possible value of angle $\angle MQA$.
2015 Iran Geometry Olympiad, 5
we have a triangle $ ABC $ and make rectangles $ ABA_1B_2 $ , $ BCB_1C_2 $ and $ CAC_1A_2 $ out of it.
then pass a line through $ A_2 $ perpendicular to $ C_1A_2 $ and pass another line through $ A_1 $ perpendicular to $ A_1B_2 $.
let $ A' $ the common point of this two lines.
like this we make $ B' $ and $ C' $.
prove $ AA' $ , $ BB' $ and $ CC' $ intersect each other in a same point.
Kyiv City MO Seniors Round2 2010+ geometry, 2019.10.3.1
Let $ABCDE$ be a regular pentagon with center $M$. Point $P \ne M$ is selected on segment $MD$. The circumscribed circle of triangle $ABP$ intersects the line $AE$ for second time at point $Q$, and a line that is perpendicular to the $CD$ and passes through $P$, for second time at the point $R$. Prove that $AR = QR$.
1998 Bundeswettbewerb Mathematik, 4
Let $3(2^n -1)$ points be selected in the interior of a polyhedron $P$ with volume $2^n$, where n is a positive integer. Prove that there exists a convex polyhedron $U$ with volume $1$, contained entirely inside $P$, which contains none of the selected points.
2015 AIME Problems, 15
Circles $\mathcal{P}$ and $\mathcal{Q}$ have radii $1$ and $4$, respectively, and are externally tangent at point $A$. Point $B$ is on $\mathcal{P}$ and point $C$ is on $\mathcal{Q}$ so that line $BC$ is a common external tangent of the two circles. A line $\ell$ through $A$ intersects $\mathcal{P}$ again at $D$ and intersects $\mathcal{Q}$ again at $E$. Points $B$ and $C$ lie on the same side of $\ell$, and the areas of $\triangle DBA$ and $\triangle ACE$ are equal. This common area is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
[asy]
import cse5;
pathpen=black; pointpen=black;
size(6cm);
pair E = IP(L((-.2476,1.9689),(0.8,1.6),-3,5.5),CR((4,4),4)), D = (-.2476,1.9689);
filldraw(D--(0.8,1.6)--(0,0)--cycle,gray(0.7));
filldraw(E--(0.8,1.6)--(4,0)--cycle,gray(0.7));
D(CR((0,1),1)); D(CR((4,4),4,150,390));
D(L(MP("D",D(D),N),MP("A",D((0.8,1.6)),NE),1,5.5));
D((-1.2,0)--MP("B",D((0,0)),S)--MP("C",D((4,0)),S)--(8,0));
D(MP("E",E,N));
[/asy]
2002 Iran Team Selection Test, 3
A "[i]2-line[/i]" is the area between two parallel lines. Length of "2-line" is distance of two parallel lines. We have covered unit circle with some "2-lines". Prove sum of lengths of "2-lines" is at least 2.
2023 Princeton University Math Competition, A6 / B8
Let $\vartriangle ABC$ have $AB = 14$, $BC = 30$, $AC = 40$ and $\vartriangle AB'C'$ with $AB' = 7\sqrt6$, $B'C' = 15\sqrt6$, $AC' = 20\sqrt6$ such that $\angle BAB' = \frac{5\pi}{12}$ . The lines $BB'$ and $CC'$ intersect at point $D$. Let $O$ be the circumcenter of $\vartriangle BCD$, and let $O' $ be the circumcenter of $\vartriangle B'C'D$. Then the length of segment $OO'$ can be expressed as $\frac{a+b \sqrt{c}}{ d}$ , where $a$, $b$, $c$, and $d$ are positive integers such that $a$ and $d$ are relatively prime, and $c$ is not divisible by the square of any prime. Find $a+b+c+d$
2020 IMO Shortlist, G1
Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$.
Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.
2008 Sharygin Geometry Olympiad, 2
(V.Protasov, 8) For a given pair of circles, construct two concentric circles such that both are tangent to the given two. What is the number of solutions, depending on location of the circles?
2002 Brazil National Olympiad, 2
$ABCD$ is a cyclic quadrilateral and $M$ a point on the side $CD$ such that $ADM$ and $ABCM$ have the same area and the same perimeter. Show that two sides of $ABCD$ have the same length.
2008 Iran MO (3rd Round), 4
=A subset $ S$ of $ \mathbb R^2$ is called an algebraic set if and only if there is a polynomial $ p(x,y)\in\mathbb R[x,y]$ such that
\[ S \equal{} \{(x,y)\in\mathbb R^2|p(x,y) \equal{} 0\}
\]
Are the following subsets of plane an algebraic sets?
1. A square
[img]http://i36.tinypic.com/28uiaep.png[/img]
2. A closed half-circle
[img]http://i37.tinypic.com/155m155.png[/img]
2013 India PRMO, 4
Three points $X, Y,Z$ are on a striaght line such that $XY = 10$ and $XZ = 3$. What is the product of all possible values of $YZ$?
2021 Stars of Mathematics, 3
Let $ABC$ be a triangle, let its $A$-symmedian cross the circle $ABC$ again at $D$, and let $Q$ and $R$ be the feet of the perpendiculars from $D$ on the lines $AC$ and $AB$, respectively. Consider a variable point $X$ on the line $QR$, different from both $Q$ and $R$. The line through $X$ and perpendicular to $DX$ crosses the lines $AC$ and $AB$ at $V$ and $W$, respectively. Determine the geometric locus of the midpoint of the segment $VW$.
[i]Adapted from American Mathematical Monthly[/i]
1989 National High School Mathematics League, 14
In regular triangular pyramid $S-ABC$, hieght $SO=3$, length of sides of bottom surface is $6$. Projection of $A$ on plane $SBC$ is $O'$. $P\in AO',\frac{AP}{PO'}=8$. Draw a plane
parallel to plane $ABC$ and passes $P$. Find the area of the cross section.
2016 Saint Petersburg Mathematical Olympiad, 5
Incircle of $\triangle ABC$ touch $AC$ at $D$. $BD$ intersect incircle at $E$. Points $F,G$ on incircle are such points, that $FE \parallel BC,GE \parallel AB$. $I_1,I_2$ are incenters of $DEF,DEG$.
Prove that $I_1I_2 \perp $ bisector of $\angle ABC$
2014 India PRMO, 15
Let $XOY$ be a triangle with $\angle XOY = 90^o$. Let $M$ and $N$ be the midpoints of legs $OX$ and $OY$, respectively. Suppose that $XN = 19$ and $YM =22$. What is $XY$?
2008 Peru MO (ONEM), 3
$ABC$ is an acute triangle with $\angle ACB = 45^o$. Let $D$ and $E$ be points on the sides $BC$ and $AC$, respectively, such that $AB = AD = BE$. Let $M,N$ and $X$ be the midpoints of $BD, AE$ and $AB$, respectively. Let lines $AM$ and $BN$ intersect at point $P$. Show that lines $XP$ and $DE$ are perpendicular.
1990 IMO Longlists, 27
A plane cuts a right circular cone of volume $ V$ into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the volume of the smaller part.
[i]Original formulation:[/i]
A plane cuts a right circular cone into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the ratio of the volume of the smaller part to the volume of the whole cone.