This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2014 Bulgaria JBMO TST, 5

Tags: geometry
From the foot $D$ of the height $CD$ in the triangle $ABC,$ perpendiculars to $BC$ and $AC$ are drawn, which they intersect at points $M$ and $N.$ Let $\angle CAB = 60^{\circ} , \angle CBA = 45^{\circ} ,$ and $H$ be the orthocentre of $MNC.$ If $O$ is the midpoint of $CD,$ find $\angle COH.$

2020 Princeton University Math Competition, A1/B3

Tags: geometry
Let $\gamma_1$ and $\gamma_2$ be circles centered at $O$ and $ P$ respectively, and externally tangent to each other at point $Q$. Draw point $D$ on $\gamma_1$ and point $E$ on $\gamma_2$ such that line $DE$ is tangent to both circles. If the length $OQ = 1$ and the area of the quadrilateral $ODEP$ is $520$, then what is the value of length $PQ$?

2005 JHMT, Team Round

[b]p1.[/b] Consider the following function $f(x) = \left(\frac12 \right)^x - \left(\frac12 \right)^{x+1}$. Evaluate the infinite sum $f(1) + f(2) + f(3) + f(4) +...$ [b]p2.[/b] Find the area of the shape bounded by the following relations $$y \le |x| -2$$ $$y \ge |x| - 4$$ $$y \le 0$$ where |x| denotes the absolute value of $x$. [b]p3.[/b] An equilateral triangle with side length $6$ is inscribed inside a circle. What is the diameter of the largest circle that can fit in the circle but outside of the triangle? [b]p4.[/b] Given $\sin x - \tan x = \sin x \tan x$, solve for $x$ in the interval $(0, 2\pi)$, exclusive. [b]p5.[/b] How many rectangles are there in a $6$ by $6$ square grid? [b]p6.[/b] Find the lateral surface area of a cone with radius $3$ and height $4$. [b]p7.[/b] From $9$ positive integer scores on a $10$-point quiz, the mean is $ 8$, the median is $ 8$, and the mode is $7$. Determine the maximum number of perfect scores possible on this test. [b]p8.[/b] If $i =\sqrt{-1}$, evaluate the following continued fraction: $$2i +\frac{1}{2i +\frac{1}{2i+ \frac{1}{2i+...}}}$$ [b]p9.[/b] The cubic polynomial $x^3-px^2+px-6$ has roots $p, q$, and $r$. What is $(1-p)(1-q)(1-r)$? [b]p10.[/b] (Variant on a Classic.) Gilnor is a merchant from Cutlass, a town where $10\%$ of the merchants are thieves. The police utilize a lie detector that is $90\%$ accurate to see if Gilnor is one of the thieves. According to the device, Gilnor is a thief. What is the probability that he really is one? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 Korea Winter Program Practice Test, 4

Tags: geometry
There are $n$ lattice points in a general position. (no three points are collinear) A convex polygon $P$ covers the said $n$ points. (the borders are included) Prove that, for large enough $n$ and a positive real $\epsilon$, the perimeter of $P$ is no less than $(\sqrt{2}+\epsilon)n$.

1978 AMC 12/AHSME, 2

Tags: geometry
If four times the reciprocal of the circumference of a circle equals the diameter of the circle, then the area of the circle is $\textbf{(A) }\frac{1}{\pi^2}\qquad\textbf{(B) }\frac{1}{\pi}\qquad\textbf{(C) }1\qquad\textbf{(D) }\pi\qquad \textbf{(E) }\pi^2$

2010 Irish Math Olympiad, 5

Tags: geometry
Suppose $a,b,c$ are the side lengths of a triangle $ABC$. Show that $$x=\sqrt{a(b+c-a)}, y=\sqrt{b(c+a-b)}, z=\sqrt{c(a+b-c)}$$ are the side lengths of an acute-angled triangle $XYZ$, with the same area as $ABC$, but with a smaller perimeter, unless $ABC$ is equilateral.

2017 Poland - Second Round, 2

Tags: geometry
In an acute triangle $ABC$ the bisector of $\angle BAC$ crosses $BC$ at $D$. Points $P$ and $Q$ are orthogonal projections of $D$ on lines $AB$ and $AC$. Prove that $[APQ]=[BCQP]$ if and only if the circumcenter of $ABC$ lies on $PQ$.

2024 Malaysian Squad Selection Test, 8

Tags: geometry
Given a triangle $ABC$, let $I$ be the incenter, and $J$ be the $A$-excenter. A line $\ell$ through $A$ perpendicular to $BC$ intersect the lines $BI$, $CI$, $BJ$, $CJ$ at $P$, $Q$, $R$, $S$ respectively. Suppose the angle bisector of $\angle BAC$ meet $BC$ at $K$, and $L$ is a point such that $AL$ is a diameter in $(ABC)$. Prove that the line $KL$, $\ell$, and the line through the centers of circles $(IPQ)$ and $(JRS)$, are concurrent. [i]Proposed by Chuah Jia Herng & Ivan Chan Kai Chin[/i]

2002 IMO Shortlist, 6

Let $n\geq3$ be a positive integer. Let $C_1,C_2,C_3,\ldots,C_n$ be unit circles in the plane, with centres $O_1,O_2,O_3,\ldots,O_n$ respectively. If no line meets more than two of the circles, prove that \[ \sum\limits^{}_{1\leq i<j\leq n}{1\over O_iO_j}\leq{(n-1)\pi\over 4}. \]

Russian TST 2014, P2

Tags: incircle , geometry
In an acute-angled triangle $ABC$, the point $H{}$ is the orthocenter, $M{}$ is the midpoint of the side $BC$ and $\omega$ is the circumcircle. The lines $AH, BH$ and $CH{}$ intersect $\omega$ a second time at points $D, E$ and $F{}$ respectively. The ray $MH$ intersects $\omega$ at point $J{}$. The points $K{}$ and $L{}$ are the centers of the inscribed circles of the triangles $DEJ$ and $DFJ$ respectively. Prove that $KL\parallel BC$.

2022 CMIMC, 2.6

Tags: geometry
A triangle $\triangle ABC$ satisfies $AB = 13$, $BC = 14$, and $AC = 15$. Inside $\triangle ABC$ are three points $X$, $Y$, and $Z$ such that: [list] [*] $Y$ is the centroid of $\triangle ABX$ [*] $Z$ is the centroid of $\triangle BCY$ [*] $X$ is the centroid of $\triangle CAZ$ [/list] What is the area of $\triangle XYZ$? [i]Proposed by Adam Bertelli[/i]

1994 Tournament Of Towns, (404) 2

Two circles intersect at the points $A$ and $B$. Tangent lines drawn to both of the circles at the point $A$ intersect the circles at the points $M$ and $N$. The lines $BM$ and $BN$ intersect the circles once more at the points $P$ and $Q$ respectively. Prove that the segments $MP$ and $NQ$ are equal. (I Nagel)

1981 National High School Mathematics League, 5

Given a cube $ABCD-A'B'C'D'$, in the $12$ lines:$AB',BA',CD',DC',AD',DA',BC',CB',AC,BD,A'C',B'D'$, how many sets of lines are skew lines? $\text{(A)}30\qquad\text{(B)}60\qquad\text{(C)}24\qquad\text{(D)}48$

2018 Belarusian National Olympiad, 10.6

The vertices of the convex quadrilateral $ABCD$ lie on the parabola $y=x^2$. It is known that $ABCD$ is cyclic and $AC$ is a diameter of its circumcircle. Let $M$ and $N$ be the midpoints of the diagonals of $AC$ and $BD$ respectively. Find the length of the projection of the segment $MN$ on the axis $Oy$.

2019 Saudi Arabia BMO TST, 2

Let $I $be the incenter of triangle $ABC$and $J$ the excenter of the side $BC$: Let $M$ be the midpoint of $CB$ and $N$ the midpoint of arc $BAC$ of circle $(ABC)$. If $T$ is the symmetric of the point $N$ by the point $A$, prove that the quadrilateral $JMIT$ is cyclic

1954 Polish MO Finals, 5

Prove that if in a tetrahedron $ ABCD $ opposite edges are equal, i.e. $ AB = CD $, $ AC = BD $, $ AD = BC $, then the lines passing through the midpoints of opposite edges are mutually perpendicular and are the axes of symmetry of the tetrahedron.

May Olympiad L1 - geometry, 1995.5

A tortoise walks $60$ meters per hour and a lizard walks at $240$ meters per hour. There is a rectangle $ABCD$ where $AB =60$ and $AD =120$. Both start from the vertex $A$ and in the same direction ($A \to B \to D \to A$), crossing the edge of the rectangle. The lizard has the habit of advancing two consecutive sides of the rectangle, turning to go back one, turning to go forward two, turning to go back one and so on. How many times and in what places do the tortoise and the lizard meet when the tortoise completes its third turn?

2023 Thailand Mathematical Olympiad, 8

Let $ABC$ be an acute triangle. The tangent at $A,B$ of the circumcircle of $ABC$ intersect at $T$. Line $CT$ meets side $AB$ at $D$. Denote by $\Gamma_1,\Gamma_2$ the circumcircle of triangle $CAD$, and the circumcircle of triangle $CBD$, respectively. Let line $TA$ meet $\Gamma_1$ again at $E$ and line $TB$ meet $\Gamma_2$ again at $F$. Line $EF$ intersects sides $AC,BC$ at $P,Q$, respectively. Prove that $EF=PQ+AB$.

Mathley 2014-15, 5

Tags: geometry , circles , cyclic
A quadrilateral $ABCD$ is inscribed in a circle $(O)$. Another circle $(I)$ is tangent to the diagonals $AC, BD$ at $M, N$ respectively. Suppose that $MN$ meets $AB,CD$ at $P, Q$ respectively. The circumcircle of triangle $IMN$ meets the circumcircles of $IAB, ICD$ at $K, L$ respectively, which are distinct from $I$. Prove that the lines $PK, QL$, and $OI$ are concurrent. Tran Minh Ngoc, a student of Ho Chi Minh City College, Ho Chi Minh

2007 IMAR Test, 2

Denote by $ \mathcal{C}$ the family of all configurations $ C$ of $ N > 1$ distinct points on the sphere $ S^2,$ and by $ \mathcal{H}$ the family of all closed hemispheres $ H$ of $ S^2.$ Compute: $ \displaystyle\max_{H\in\mathcal{H}}\displaystyle\min_{C\in\mathcal{C}}|H\cap C|$, $ \displaystyle\min_{H\in\mathcal{H}}\displaystyle\max_{C\in\mathcal{C}}|H\cap C|$ $ \displaystyle\max_{C\in\mathcal{C}}\displaystyle\min_{H\in\mathcal{H}}|H\cap C|$ and $ \displaystyle\min_{C\in\mathcal{C}}\displaystyle\max_{H\in\mathcal{H}}|H\cap C|.$

1979 Polish MO Finals, 5

Prove that the product of the sides of a quadrilateral inscribed in a circle with radius $1$ does not exceed $4$.

Kyiv City MO Seniors 2003+ geometry, 2016.10.4

On the circle with diameter $AB$, the point $M$ was selected and fixed. Then the point ${{Q} _ {i}}$ is selected, for which the chord $M {{Q} _ {i}}$ intersects $AB$ at the point ${{K} _ {i}}$ and thus $ \angle M {{K} _ {i}} B <90 {} ^ \circ$. A chord that is perpendicular to $AB$ and passes through the point ${{K} _ {i}}$ intersects the line $B {{Q} _ {i}}$ at the point ${{P } _ {i}}$. Prove that the points ${{P} _ {i}}$ in all possible choices of the point ${{Q} _ {i}}$ lie on the same line. (Igor Nagel)

2016 Tuymaada Olympiad, 2

Tags: geometry
The point $D$ on the altitude $AA_1$ of an acute triangle $ABC$ is such that $\angle BDC=90^\circ$; $H$ is the orthocentre of $ABC$. A circle with diameter $AH$ is constructed. Prove that the tangent drawn from $B$ to this circle is equal to $BD$.

2023 Serbia Team Selection Test, P2

A circle centered at $A$ intersects sides $AC$ and $AB$ of $\triangle ABC$ at $E$ and $F$, and the circumcircle of $\triangle ABC$ at $X$ and $Y$. Let $D$ be the point on $BC$ such that $AD$, $BE$, $CF$ concur. Let $P=XE\cap YF$ and $Q=XF\cap YE$. Prove that the foot of the perpendicular from $D$ to $EF$ lies on $PQ$.

2011 Cono Sur Olympiad, 5

Let $ABC$ be a triangle and $D$ a point in $AC$. If $\angle{CBD} - \angle{ABD} = 60^{\circ}, \hat{BDC} = 30^{\circ}$ and also $AB \cdot BC = BD^{2}$, determine the measure of all the angles of triangle $ABC$.