This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1998 Bulgaria National Olympiad, 3

On the sides of a non-obtuse triangle $ABC$ a square, a regular $n$-gon and a regular $m$-gon ($m$,$n > 5$) are constructed externally, so that their centers are vertices of a regular triangle. Prove that $m = n = 6$ and find the angles of $\triangle ABC$.

2017 German National Olympiad, 2

Let $ABC$ be a triangle such that $\vert AB\vert \ne \vert AC\vert$. Prove that there exists a point $D \ne A$ on its circumcircle satisfying the following property: For any points $M, N$ outside the circumcircle on the rays $AB$ and $AC$, respectively, satisfying $\vert BM\vert=\vert CN\vert$, the circumcircle of $AMN$ passes through $D$.

2019 Korea - Final Round, 4

Tags: geometry
Let triangle $ABC$ be an acute scalene triangle with orthocenter $H$. The foot of perpendicular from $A$ to $BC$ is $O$, and denote $K,L$ by the midpoints of $AB, AC$, respectively. For a point $D(\neq O,B,C)$ on segment $BC$, let $E,F$ be the orthocenters of triangles $ABD, ACD$, respectively, and denote $M,N$ by the midpoints of $DE,DF$. The perpendicular line from $M$ to $KH$ cuts the perpendicular line from $N$ to $LH$ at $P$. If $Q$ is the midpoint of $EF$, and $S$ is the orthocenter of triangle $HPQ$, then prove that as $D$ varies on $BC$, the ratio $\frac{OS}{OH}$, $\frac{OQ}{OP}$ remains constant.

2016 CMIMC, 9

Tags: geometry
Let $\triangle ABC$ be a triangle with $AB=65$, $BC=70$, and $CA=75$. A semicircle $\Gamma$ with diameter $\overline{BC}$ is constructed outside the triangle. Suppose there exists a circle $\omega$ tangent to $AB$ and $AC$ and furthermore internally tangent to $\Gamma$ at a point $X$. The length $AX$ can be written in the form $m\sqrt{n}$ where $m$ and $n$ are positive integers with $n$ not divisible by the square of any prime. Find $m+n$.

2005 Romania Team Selection Test, 3

Prove that if the distance from a point inside a convex polyhedra with $n$ faces to the vertices of the polyhedra is at most 1, then the sum of the distances from this point to the faces of the polyhedra is smaller than $n-2$. [i]Calin Popescu[/i]

2017 Moldova EGMO TST, 2

Tags: geometry
Let us denote the midpoint of $AB$ with $O$. The point $C$, different from $A$ and $B$ is on the circle $\Omega$ with center $O$ and radius $OA$ and the point $D$ is the foot of the perpendicular from $C$ to $AB$. The circle with center $C$ and radius $CD$ and $\omega$ intersect at $M$, $N$. Prove that $MN$ cuts $CD$ in two equal segments.

LMT Speed Rounds, 25

Tags: geometry
In triangle $ABC$ with centroid $G$ and circumcircle $\omega$, line $\overline{AG}$ intersects $BC$ at $D$ and $\omega$ at $P$. Given that $GD =DP = 3$, and $GC = 4$, find $AB^2$. [i]Proposed by Muztaba Syed[/i]

2001 All-Russian Olympiad Regional Round, 9.5

Two points are selected in a convex pentagon. Prove that you can choose a quadrilateral with vertices at the vertices of a pentagon so that both selected points fall into it.

1974 IMO Shortlist, 10

Let $ABC$ be a triangle. Prove that there exists a point $D$ on the side $AB$ of the triangle $ABC$, such that $CD$ is the geometric mean of $AD$ and $DB$, iff the triangle $ABC$ satisfies the inequality $\sin A\sin B\le\sin^2\frac{C}{2}$. [hide="Comment"][i]Alternative formulation, from IMO ShortList 1974, Finland 2:[/i] We consider a triangle $ABC$. Prove that: $\sin(A) \sin(B) \leq \sin^2 \left( \frac{C}{2} \right)$ is a necessary and sufficient condition for the existence of a point $D$ on the segment $AB$ so that $CD$ is the geometrical mean of $AD$ and $BD$.[/hide]

2008 Germany Team Selection Test, 2

Let $ ABC$ be a fixed triangle, and let $ A_1$, $ B_1$, $ C_1$ be the midpoints of sides $ BC$, $ CA$, $ AB$, respectively. Let $ P$ be a variable point on the circumcircle. Let lines $ PA_1$, $ PB_1$, $ PC_1$ meet the circumcircle again at $ A'$, $ B'$, $ C'$, respectively. Assume that the points $ A$, $ B$, $ C$, $ A'$, $ B'$, $ C'$ are distinct, and lines $ AA'$, $ BB'$, $ CC'$ form a triangle. Prove that the area of this triangle does not depend on $ P$. [i]Author: Christopher Bradley, United Kingdom [/i]

2011 Today's Calculation Of Integral, 758

Find the slope of a line passing through the point $(0,\ 1)$ with which the area of the part bounded by the line and the parabola $y=x^2$ is $\frac{5\sqrt{5}}{6}.$

2004 National High School Mathematics League, 1

Tags: geometry
In acute triangle $ABC$, point $H$ is the intersection point of heights $CE$ on side $AB$ and $BD$ on side $AC$. A circle with diameter $DE$ intersects $AB$ and $AC$ at $F$ and $G$ respectively. $FG$ and $AH$ intersect at $K$. If $BC=25,BD=20, BE=7$, find the length of $AK$.

2014 India National Olympiad, 5

In a acute-angled triangle $ABC$, a point $D$ lies on the segment $BC$. Let $O_1,O_2$ denote the circumcentres of triangles $ABD$ and $ACD$ respectively. Prove that the line joining the circumcentre of triangle $ABC$ and the orthocentre of triangle $O_1O_2D$ is parallel to $BC$.

2021 Girls in Math at Yale, Mixer Round

[b]p1.[/b] Find the number of ordered triples $(a, b, c)$ satisfying $\bullet$ $a, b, c$ are are single-digit positive integers, and $\bullet$ $a \cdot b + c = a + b \cdot c$. [b]p2.[/b] In their class Introduction to Ladders at Greendale Community College, Jan takes four tests. They realize that their test scores in chronological order form an increasing arithmetic progression with integer terms, and that the average of those scores is an integer greater than or equal to $94$. How many possible combinations of test scores could they have had? (Test scores at Greendale range between $0$ and $100$, inclusive.) [b]p3.[/b] Suppose that $a + \frac{1}{b} = 2$ and $b +\frac{1}{a} = 3$. If$ \frac{a}{b} + \frac{b}{a}$ can be expressed as $\frac{p}{q}$ in simplest terms, find $p + q$. [b]p4.[/b] Suppose that $A$ and $B$ are digits between $1$ and $9$ such that $$0.\overline{ABABAB...}+ B \cdot (0.\overline{AAA...}) = A \cdot (0.\overline{B_1B_1B_1...}) + 1$$ Find the sum of all possible values of $10A + B$. [b]p5.[/b] Let $ABC$ be an isosceles right triangle with $m\angle ABC = 90^o$. Let $D$ and $E$ lie on segments $AC$ and $BC$, respectively, such that triangles $\vartriangle ADB$ and $\vartriangle CDE$ are similar and $DE = EB$. If $\frac{AC}{AD} = 1 +\frac{\sqrt{a}}{b}$ with $a, b$ positive integers and a squarefree, then find $a + b$. [b]p6.[/b] Five bowling pins $P_1$, $P_2$,..., $P_5$ are lined up in a row. Each turn, Jemma picks a pin at random from the standing pins, and throws a bowling ball at that pin; that pin and each pin directly adjacent to it are knocked down. If the expected value of the number of turns Jemma will take to knock down all the pins is a b where a and b are relatively prime, find $a + b$. (Pins $P_i$ and $P_j$ are adjacent if and only if $|i -j| = 1$.) [b]p7.[/b] Let triangle $ABC$ have side lengths $AB = 10$, $BC = 24$, and $AC = 26$. Let $I$ be the incenter of $ABC$. If the maximum possible distance between $I$ and a point on the circumcircle of $ABC$ can be expressed as $a +\sqrt{b}$ for integers $a$ and $b$ with $b$ squarefree, find $a + b$. (The incenter of any triangle $XY Z$ is the intersection of the angle bisectors of $\angle Y XZ$, $\angle XZY$, and $\angle ZY X$.) [b]p8.[/b] How many terms in the expansion of $$(1 + x + x^2 + x^3 +... + x^{2021})(1 + x^2 + x^4 + x^6 + ... + x^{4042})$$ have coefficients equal to $1011$? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1968 Polish MO Finals, 3

In a tetrahedron $ ABCD $ the edges $AD$, $ BD $, $ CD $ are equal. $ ABC $ Non-collinear points are chosen in the plane. $ A_1$, $B_1$, $C_1 $ The lines $DA_1$, $DB_1$, $DC_1 $ intersect the surface of the sphere circumscribed about the tetrahedron at points $ A_2$, $B_2$, $C_2 $, different from the point $ D $. Prove that the points $A_1$, $B_1$, $C_1$, $A_2$, $B_2$, $C_2$ lie on the surface of a certain sphere.

Champions Tournament Seniors - geometry, 2006.3

Let $ABC$ be an isosceles triangle with $AB = AC$. Let $D$ be a point on the base $BC$ such that $BD:DC = 2: 1$. Note on the segment $AD$ a point $P$ such that $\angle BAC= \angle BPD $. Prove that $\angle BPD = 2 \angle CPD$.

2012 Romania Team Selection Test, 2

Let $ABCD$ be a cyclic quadrilateral such that the triangles $BCD$ and $CDA$ are not equilateral. Prove that if the Simson line of $A$ with respect to $\triangle BCD$ is perpendicular to the Euler line of $BCD$, then the Simson line of $B$ with respect to $\triangle ACD$ is perpendicular to the Euler line of $\triangle ACD$.

2019 Austrian Junior Regional Competition, 2

A square $ABCD$ is given. Over the side $BC$ draw an equilateral triangle $BCS$ on the outside. The midpoint of the segment $AS$ is $N$ and the midpoint of the side $CD$ is $H$. Prove that $\angle NHC = 60^o$. . (Karl Czakler)

2001 All-Russian Olympiad, 3

A point $K$ is taken inside parallelogram $ABCD$ so that the midpoint of $AD$ is equidistant from $K$ and $C$, and the midpoint of $CD$ is equidistant form $K$ and $A$. Let $N$ be the midpoint of $BK$. Prove that the angles $NAK$ and $NCK$ are equal.

2011 All-Russian Olympiad Regional Round, 9.3

A closed non-self-intersecting polygonal chain is drawn through the centers of some squares on the $8\times 8$ chess board. Every link of the chain connects the centers of adjacent squares either horizontally, vertically or diagonally, where the two squares are adjacent if they share an edge or a corner. For the interior polygon bounded by the chain, prove that the total area of black pieces equals the total area of white pieces. (Author: D. Khramtsov)

2014 Argentine National Olympiad, Level 3, 3.

Tags: geometry
Two circumferences of radius $1$ that do not intersect, $c_1$ and $c_2$, are placed inside an angle whose vertex is $O$. $c_1$ is tangent to one of the rays of the angle, while $c_2$ is tangent to the other ray. One of the common internal tangents of $c_1$ and $c_2$ passes through $O$, and the other one intersects the rays of the angle at points $A$ and $B$, with $AO=BO$. Find the distance of point $A$ to the line $OB$.

1987 AMC 12/AHSME, 30

In the figure, $\triangle ABC$ has $\angle A =45^{\circ}$ and $\angle B =30^{\circ}$. A line $DE$, with $D$ on $AB$ and $\angle ADE =60^{\circ}$, divides $\triangle ABC$ into two pieces of equal area. (Note: the figure may not be accurate; perhaps $E$ is on $CB$ instead of $AC$.) The ratio $\frac{AD}{AB}$ is [asy] size((220)); draw((0,0)--(20,0)--(7,6)--cycle); draw((6,6)--(10,-1)); label("A", (0,0), W); label("B", (20,0), E); label("C", (7,6), NE); label("D", (9.5,-1), W); label("E", (5.9, 6.1), SW); label("$45^{\circ}$", (2.5,.5)); label("$60^{\circ}$", (7.8,.5)); label("$30^{\circ}$", (16.5,.5)); [/asy] $ \textbf{(A)}\ \frac{1}{\sqrt{2}} \qquad\textbf{(B)}\ \frac{2}{2+\sqrt{2}} \qquad\textbf{(C)}\ \frac{1}{\sqrt{3}} \qquad\textbf{(D)}\ \frac{1}{\sqrt[3]{6}} \qquad\textbf{(E)}\ \frac{1}{\sqrt[4]{12}} $

Estonia Open Senior - geometry, 2020.2.5

Tags: geometry , ratio , angle
The bisector of the interior angle at the vertex $B$ of the triangle $ABC$ and the perpendicular line on side $BC$ passing through the vertex $C$ intersects at $D$. Let $M$ and $N$ be the midpoints of the segments $BC$ and $BD$, respectively, with $N$ on the side $AC$. Find all possibilities of the angles of the triangles $ABC$, if it is known that $\frac{| AM |}{| BC |}=\frac{|CD|}{|BD|}$. .

2019 Iran MO (3rd Round), 1

Consider a triangle $ABC$ with incenter $I$. Let $D$ be the intersection of $BI,AC$ and $CI$ intersects the circumcircle of $ABC$ at $M$. Point $K$ lies on the line $MD$ and $\angle KIA=90^\circ$. Let $F$ be the reflection of $B$ about $C$. Prove that $BIKF$ is cyclic.

2013 NIMO Problems, 1

Tim is participating in the following three math contests. On each contest his score is the number of correct answers. $\bullet$ The Local Area Inspirational Math Exam consists of 15 problems. $\bullet$ The Further Away Regional Math League has 10 problems. $\bullet$ The Distance-Optimized Math Open has 50 problems. For every positive integer $n$, Tim knows the answer to the $n$th problems on each contest (which are pairwise distinct), if they exist; however, these answers have been randomly permuted so that he does not know which answer corresponds to which contest. Unaware of the shuffling, he competes with his modified answers. Compute the expected value of the sum of his scores on all three contests. [i]Proposed by Evan Chen[/i]