This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2018 Saudi Arabia JBMO TST, 3

Tags: geometry
Let $ABC$ be a triangle inscribed in the circle $K_1$ and $I$ be center of the inscribed in $ABC$ circle. The lines $IB$ and $IC$ intersect circle $K_1$ again in $J$ and $L$. Circle $K_2$, circumscribed to $IBC$, intersects again $CA$ and $AB$ in $E$ and $F$. Show that $EL$ and $FJ$ intersects on the circle $K_2$.

2022 Romania Team Selection Test, 3

Tags: geometry
Let $ABC$ be a triangle and let its incircle $\gamma$ touch the sides $BC,CA,AB$ at $D,E,F$ respectively. Let $P$ be a point strictly in the interior of $\gamma.$ The segments $PA,PB,PC$ cross $\gamma$ at $A_0,B_0,C_0$ respectively. Let $S_A,S_B,S_C$ be the centres of the circles $PEF,PFD,PDE$ respectively and let $T_A,T_B,T_C$ be the centres of the circles $PB_0C_0,PC_0A_0,PA_0B_0$ respectively. Prove that $S_AT_A, S_BT_B$ and $S_CT_C$ are concurrent.

2020 JBMO TST of France, 2

Tags: geometry
Let $ABC$ be a triangle and $K$ be its circumcircle. Let $P$ be the point of intersection of $BC$ with tangent in $A$ to $K$. Let $D$ and $E$ be the symmetrical points of $B$ and $A$, respectively, from $P$. Let $K_1$ be the circumcircle of triangle $DAC$ and let $K_2$ the circumscribed circle of triangle $APB$. We denote with $F$ the second intersection point of the circles $K_1$ and $K_2$ Then denote with $G$ the second intersection point of the circle $K_1$ with $BF$. Show that the lines $BC$ and $EG$ are parallel.

2023 Stanford Mathematics Tournament, 3

Triangle $\vartriangle ABC$ has side lengths $AB = 5$, $BC = 8$, and $CA = 7$. Let the perpendicular bisector of $BC$ intersect the circumcircle of $\vartriangle ABC$ at point $D$ on minor arc $BC$ and point $E$ on minor arc $AC$, and $AC$ at point $F$. The line parallel to $BC$ passing through $F$ intersects $AD$ at point $G$ and $CE$ at point $H$. Compute $\frac{[CHF]}{[DGF]}$ . (Given a triangle $\vartriangle ABC$, $[ABC]$ denotes its area.)

2006 AMC 12/AHSME, 23

Isosceles $ \triangle ABC$ has a right angle at $ C$. Point $ P$ is inside $ \triangle ABC$, such that $ PA \equal{} 11, PB \equal{} 7,$ and $ PC \equal{} 6$. Legs $ \overline{AC}$ and $ \overline{BC}$ have length $ s \equal{} \sqrt {a \plus{} b\sqrt {2}}$, where $ a$ and $ b$ are positive integers. What is $ a \plus{} b$? [asy]pointpen = black; pathpen = linewidth(0.7); pen f = fontsize(10); size(5cm); pair B = (0,sqrt(85+42*sqrt(2))); pair A = (B.y,0); pair C = (0,0); pair P = IP(arc(B,7,180,360),arc(C,6,0,90)); D(A--B--C--cycle); D(P--A); D(P--B); D(P--C); MP("A",D(A),plain.E,f); MP("B",D(B),plain.N,f); MP("C",D(C),plain.SW,f); MP("P",D(P),plain.NE,f);[/asy] $ \textbf{(A) } 85 \qquad \textbf{(B) } 91 \qquad \textbf{(C) } 108 \qquad \textbf{(D) } 121 \qquad \textbf{(E) } 127$

2019 ASDAN Math Tournament, 2

Tags: geometry
A square and a line intersect at a $45^o$ angle. The line bisects the square into two unequal pieces such that the area of one piece is twice that of the other. If the square has side length $6$, compute the length of the cut due to the line. [img]https://cdn.artofproblemsolving.com/attachments/6/4/2eb33fb9766497d25d342001cdbae9a7ffd4b4.png[/img]

1997 Croatia National Olympiad, Problem 3

Tags: geometry , circles
A chord divides the interior of a circle $k$ into two parts. Variable circles $k_1$ and $k_2$ are inscribed in these two parts, touching the chord at the same point. Show that the ratio of the radii of circles $k_1$ and $k_2$ is constant, i.e. independent of the tangency point with the chord.

2014 AMC 10, 23

A sphere is inscribed in a truncated right circular cone as shown. The volume of the truncated cone is twice that of the sphere. What is the ratio of the radius of the bottom base of the truncated cone to the radius of the top base of the truncated cone? [asy] real r=(3+sqrt(5))/2; real s=sqrt(r); real Brad=r; real brad=1; real Fht = 2*s; import graph3; import solids; currentprojection=orthographic(1,0,.2); currentlight=(10,10,5); revolution sph=sphere((0,0,Fht/2),Fht/2); //draw(surface(sph),green+white+opacity(0.5)); //triple f(pair t) {return (t.x*cos(t.y),t.x*sin(t.y),t.x^(1/n)*sin(t.y/n));} triple f(pair t) { triple v0 = Brad*(cos(t.x),sin(t.x),0); triple v1 = brad*(cos(t.x),sin(t.x),0)+(0,0,Fht); return (v0 + t.y*(v1-v0)); } triple g(pair t) { return (t.y*cos(t.x),t.y*sin(t.x),0); } surface sback=surface(f,(3pi/4,0),(7pi/4,1),80,2); surface sfront=surface(f,(7pi/4,0),(11pi/4,1),80,2); surface base = surface(g,(0,0),(2pi,Brad),80,2); draw(sback,rgb(0,1,0)); draw(sfront,rgb(.3,1,.3)); draw(base,rgb(.4,1,.4)); draw(surface(sph),rgb(.3,1,.3)); [/asy] $ \textbf {(A) } \dfrac {3}{2} \qquad \textbf {(B) } \dfrac {1+\sqrt{5}}{2} \qquad \textbf {(C) } \sqrt{3} \qquad \textbf {(D) } 2 \qquad \textbf {(E) } \dfrac {3+\sqrt{5}}{2} $

2015 LMT, Individual

[b]p1.[/b] What is $\sqrt[2015]{2^01^5}$? [b]p2.[/b] What is the ratio of the area of square $ABCD$ to the area of square $ACEF$? [b]p3.[/b] $2015$ in binary is $11111011111$, which is a palindrome. What is the last year which also had this property? [b]p4.[/b] What is the next number in the following geometric series: $1020100$, $10303010$, $104060401$? [b]p5.[/b] A circle has radius $A$ and area $r$. If $A = r^2\pi$, then what is the diameter, $C$, of the circle? [b]p6.[/b] If $$O + N + E = 1$$ $$T + H + R + E + E = 3$$ $$N + I + N + E = 9$$ $$T + E + N = 10$$ $$T + H + I + R + T + E + E + N = 13$$ Then what is the value of $O$? [b]p7.[/b] By shifting the initial digit, which is $6$, of the positive integer $N$ to the end (for example, $65$ becomes $56$), we obtain a number equal to $\frac{N}{4}$ . What is the smallest such $N$? [b]p8.[/b] What is $\sqrt[3]{\frac{2015!(2013!)+2014!(2012!)}{2013!(2012!)}}$ ? [b]p9.[/b] How many permutations of the digits of $1234$ are divisible by $11$? [b]p10.[/b] If you choose $4$ cards from a normal $52$ card deck (with replacement), what is the probability that you will get exactly one of each suit (there are $4$ suits)? [b]p11.[/b] If $LMT$ is an equilateral triangle, and $MATH$ is a square, such that point $A$ is in the triangle, then what is $HL/AL$? [b]p12.[/b] If $$\begin{tabular}{cccccccc} & & & & & L & H & S\\ + & & & & H & I & G & H \\ + & & S & C & H & O & O & L \\ \hline = & & S & O & C & O & O & L \\ \end{tabular}$$ and $\{M, A, T,H, S, L,O, G, I,C\} = \{0, 1, 2, 3,4, 5, 6, 7, 8, 9\} $, then what is the ordered pair $(M + A +T + H, [T + e + A +M])$ where $e$ is $2.718...$and $[n]$ is the greatest integer less than or equal to $n$ ? [b]p13.[/b] There are $5$ marbles in a bag. One is red, one is blue, one is green, one is yellow, and the last is white. There are $4$ people who take turns reaching into the bag and drawing out a marble without replacement. If the marble they draw out is green, they get to draw another marble out of the bag. What is the probability that the $3$rd person to draw a marble gets the white marble? [b]p14.[/b] Let a "palindromic product" be a product of numbers which is written the same when written back to front, including the multiplication signs. For example, $234 * 545 * 432$, $2 * 2 *2 *2$, and $14 * 41$ are palindromic products whereas $2 *14 * 4 * 12$, $567 * 567$, and $2* 2 * 3* 3 *2$ are not. 2015 can be written as a "palindromic product" in two ways, namely $13 * 5 * 31$ and $31 * 5 * 13$. How many ways can you write $2016$ as a palindromic product without using 1 as a factor? [b]p15.[/b] Let a sequence be defined as $S_n = S_{n-1} + 2S_{n-2}$, and $S_1 = 3$ and $S_2 = 4$. What is $\sum_{n=1}^{\infty}\frac{S_n}{3^n}$ ? [b]p16.[/b] Put the numbers $0-9$ in some order so that every $2$-digit substring creates a number which is either a multiple of $7$, or a power of $2$. [b]p17.[/b] Evaluate $\dfrac{8+ \dfrac{8+ \dfrac{8+...}{3+...}}{3+ \dfrac{8+...}{3+...}}}{3+\dfrac{8+ \dfrac{8+...}{3+...}}{ 3+ \dfrac{8+...}{3+...}}}$, assuming that it is a positive real number. [b]p18.[/b] $4$ non-overlapping triangles, each of area $A$, are placed in a unit circle. What is the maximum value of $A$? [b]p19.[/b] What is the sum of the reciprocals of all the (positive integer) factors of $120$ (including $1$ and $120$ itself). [b]p20.[/b] How many ways can you choose $3$ distinct elements of $\{1, 2, 3,...,4000\}$ to make an increasing arithmetic series? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 Danube Mathematical Competition, 1

Let $ABCD$ be a cyclic quadrangle, let the diagonals $AC$ and $BD$ cross at $O$, and let $I$ and $J$ be the incentres of the triangles $ABC$ and $ABD$, respectively. The line $IJ$ crosses the segments $OA$ and $OB$ at $M$ and $N$, respectively. Prove that the triangle $OMN$ is isosceles.

1978 IMO Longlists, 42

Tags: geometry
$A,B,C,D,E$ are points on a circle $O$ with radius equal to $r$. Chords $AB$ and $DE$ are parallel to each other and have length equal to $x$. Diagonals $AC,AD,BE, CE$ are drawn. If segment $XY$ on $O$ meets $AC$ at $X$ and $EC$ at $Y$ , prove that lines $BX$ and $DY$ meet at $Z$ on the circle.

2000 Harvard-MIT Mathematics Tournament, 28

What is the smallest possible volume to surface ratio of a solid cone with height = $1$ unit?

2020 Israel National Olympiad, 7

Let $P$ be a point inside a triangle $ABC$, $d_a$, $d_b$ and $d_c$ be distances from $P$ to the lines $BC$, $AC$ and $AB$ respectively, $R$ be a radius of the circumcircle and $r$ be a radius of the inscribed circle for $\Delta ABC.$ Prove that: $$\sqrt{d_a}+\sqrt{d_b}+\sqrt{d_c}\leq\sqrt{2R+5r}.$$

1986 China National Olympiad, 2

In $\triangle ABC$, the length of altitude $AD$ is $12$, and the bisector $AE$ of $\angle A$ is $13$. Denote by $m$ the length of median $AF$. Find the range of $m$ when $\angle A$ is acute, orthogonal and obtuse respectively.

2019 Stars of Mathematics, 2

Tags: geometry
Let $A$ and $C$ be two points on a circle $X$ so that $AC$ is not diameter and $P$ a segment point on $AC$ different from its middle. The circles $c_1$ and $c_2$, inner tangents in $A$, respectively $C$, to circle $X$, pass through the point $P$ ¸ and intersect a second time at point $Q$. The line $PQ$ intersects the circle $X$ in points $B$ and $D$. The circle $c_1$ intersects the segments $AB$ and $AD$ in $K$, respectively $N$, and circle $c_2$ intersects segments $CB$ and ¸ $CD $ in $L$, respectively $M$. Show that: a) the $KLMN$ quadrilateral is isosceles trapezoid; b) $Q$ is the middle of the segment $BD$. Proposed by Thanos Kalogerakis

2001 AIME Problems, 9

In triangle $ABC$, $AB=13,$ $BC=15$ and $CA=17.$ Point $D$ is on $\overline{AB},$ $E$ is on $\overline{BC},$ and $F$ is on $\overline{CA}.$ Let $AD=p\cdot AB,$ $BE=q\cdot BC,$ and $CF=r\cdot CA,$ where $p,$ $q,$ and $r$ are positive and satisfy $p+q+r=2/3$ and $p^2+q^2+r^2=2/5.$ The ratio of the area of triangle $DEF$ to the area of triangle $ABC$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2006 Indonesia Juniors, day 1

p1. Given $N = 9 + 99 + 999 + ... +\underbrace{\hbox{9999...9}}_{\hbox{121\,\,numbers}}$. Determine the value of N. p2. The triangle $ABC$ in the following picture is isosceles, with $AB = AC =90$ cm and $BC = 108$ cm. The points $P$ and $Q$ are located on $BC$, respectively such that $BP: PQ: QC = 1: 2: 1$. Points $S$ and $R$ are the midpoints of $AB$ and $AC$ respectively. From these two points draw a line perpendicular to $PR$ so that it intersects at $PR$ at points $M$ and $N$ respectively. Determine the length of $MN$. [img]https://cdn.artofproblemsolving.com/attachments/7/1/e1d1c4e6f067df7efb69af264f5c8de5061a56.png[/img] p3. If eight equilateral triangles with side $ 12$ cm are arranged as shown in the picture on the side, we get a octahedral net. Define the volume of the octahedron. [img]https://cdn.artofproblemsolving.com/attachments/4/8/18cdb8b15aaf4d92f9732880784facf9348a84.png[/img] p4. It is known that $a^2 + b^2 = 1$ and $x^2 + y^2 = 1$. Continue with the following algebraic process. $(a^2 + b^2)(x^2 + y^2) – (ax + by)^2 = ...$ a. What relationship can be concluded between $ax + by$ and $1$? b. Why? p5. A set of questions consists of $3$ questions with a choice of answers True ($T$) or False ($F$), as well as $3$ multiple choice questions with answers $A, B, C$, or $D$. Someone answer all questions randomly. What is the probability that he is correct in only $2$ questions?

2016 Nigerian Senior MO Round 2, Problem 5

A solid pyramid $TABCD$, with a quadrilateral base $ABCD$ is to be coloured on each of the five faces such that no two faces with a common edge will have the same colour. If five different colours are available, what is the number of ways to colour the pyramid?

1993 All-Russian Olympiad Regional Round, 11.4

Given a regular $ 2n$-gon, show that each of its sides and diagonals can be assigned in such a way that the sum of the obtained vectors equals zero.

2011 Indonesia Juniors, day 2

p1. Given a set of $n$ the first natural number. If one of the numbers is removed, then the average number remaining is $21\frac14$ . Specify the number which is deleted. p2. Ipin and Upin play a game of Tic Tac Toe with a board measuring $3 \times 3$. Ipin gets first turn by playing $X$. Upin plays $O$. They must fill in the $X$ or $O$ mark on the board chess in turn. The winner of this game was the first person to successfully compose a sign horizontally, vertically, or diagonally. Determine as many final positions as possible, if Ipin wins in the $4$th step. For example, one of the positions the end is like the picture on the side. [img]https://cdn.artofproblemsolving.com/attachments/6/a/a8946f24f583ca5e7c3d4ce32c9aa347c7e083.png[/img] p3. Numbers $ 1$ to $10$ are arranged in pentagons so that the sum of three numbers on each side is the same. For example, in the picture next to the number the three numbers are $16$. For all possible arrangements, determine the largest and smallest values ​​of the sum of the three numbers. [img]https://cdn.artofproblemsolving.com/attachments/2/8/3dd629361715b4edebc7803e2734e4f91ca3dc.png[/img] p4. Define $$S(n)=\sum_{k=1}^{n}(-1)^{k+1}\,\, , \,\, k=(-1)^{1+1}1+(-1)^{2+1}2+...+(-1)^{n+1}n$$ Investigate whether there are positive integers $m$ and $n$ that satisfy $S(m) + S(n) + S(m + n) = 2011$ p5. Consider the cube $ABCD.EFGH$ with side length $2$ units. Point $A, B, C$, and $D$ lie in the lower side plane. Point $I$ is intersection point of the diagonal lines on the plane of the upper side. Next, make a pyramid $I.ABCD$. If the pyramid $I.ABCD$ is cut by a diagonal plane connecting the points $A, B, G$, and $H$, determine the volume of the truncated pyramid low part.

1966 AMC 12/AHSME, 31

Triangle $ABC$ is inscribed in a circle with center $O'$. A circle with center $O$ is inscribed in triangle $ABC$. $AO$ is drawn, and extended to intersect the larger circle in $D$. Then, we must have: $\text{(A)}\ CD=BD=O'D \qquad \text{(B)}\ AO=CO=OD \qquad \text{(C)}\ CD=CO=BD \qquad\\ \text{(D)}\ CD=OD=BD \qquad \text{(E)}\ O'B=O'C=OD $ [asy] size(200); defaultpen(linewidth(0.8)+fontsize(12pt)); pair A=origin,B=(15,0),C=(5,9),O=incenter(A,B,C),Op=circumcenter(A,B,C); path incirc = incircle(A,B,C),circumcirc = circumcircle(A,B,C),line=A--3*O; pair D[]=intersectionpoints(circumcirc,line); draw(A--B--C--A--D[0]^^incirc^^circumcirc); dot(O^^Op,linewidth(4)); label("$A$",A,dir(185)); label("$B$",B,dir(355)); label("$C$",C,dir(95)); label("$D$",D[0],dir(O--D[0])); label("$O$",O,NW); label("$O'$",Op,E);[/asy]

I Soros Olympiad 1994-95 (Rus + Ukr), 10.4

There are 1995 segments such that a triangle can be formed from any three of them. Prove that using these $1995 $ segments, it is possible to assemble $664$ acute-angled triangles so that each segment is part of no more than one triangle.

2021 Sharygin Geometry Olympiad, 8.6

Let $ABC$ be an acute-angled triangle. Point $P$ is such that $AP = AB$ and $PB\parallel AC$. Point $Q$ is such that $AQ = AC$ and $CQ\parallel AB$. Segments $CP$ and $BQ$ meet at point $X$. Prove that the circumcenter of triangle $ABC$ lies on the circle $(PXQ)$.

2016 BMT Spring, 10

What is the smallest possible perimeter of a triangle with integer coordinate vertices, area $\frac12$, and no side parallel to an axis?

2011 AMC 12/AHSME, 10

A pair of standard 6-sided fair dice is rolled once. The sum of the numbers rolled determines the diameter of a circle. What is the probability that the numerical value of the area of the circle is less than the numerical value of the circle's circumference? $ \textbf{(A)}\ \frac{1}{36} \qquad \textbf{(B)}\ \frac{1}{12} \qquad \textbf{(C)}\ \frac{1}{6} \qquad \textbf{(D)}\ \frac{1}{4} \qquad \textbf{(E)}\ \frac{5}{18} $