Found problems: 25757
2021 Poland - Second Round, 2
The point P lies on the side $CD$ of the parallelogram $ABCD$ with $\angle DBA = \angle CBP$. Point $O$ is the center of the circle passing through the points $D$ and $P$ and tangent to the straight line $AD$ at point $D$. Prove that $AO = OC$.
2020 Thailand TST, 6
Let $I$ be the incentre of acute-angled triangle $ABC$. Let the incircle meet $BC, CA$, and $AB$ at $D, E$, and $F,$ respectively. Let line $EF$ intersect the circumcircle of the triangle at $P$ and $Q$, such that $F$ lies between $E$ and $P$. Prove that $\angle DPA + \angle AQD =\angle QIP$.
(Slovakia)
2006 AMC 12/AHSME, 15
Circles with centers $ O$ and $ P$ have radii 2 and 4, respectively, and are externally tangent. Points $ A$ and $ B$ are on the circle centered at $ O$, and points $ C$ and $ D$ are on the circle centered at $ P$, such that $ \overline{AD}$ and $ \overline{BC}$ are common external tangents to the circles. What is the area of hexagon $ AOBCPD$?
[asy]
unitsize(0.4 cm); defaultpen(linewidth(0.7) + fontsize(11));
pair A, B, C, D;
pair[] O;
O[1] = (6,0);
O[2] = (12,0);
A = (32/6,8*sqrt(2)/6);
B = (32/6,-8*sqrt(2)/6);
C = 2*B;
D = 2*A;
draw(Circle(O[1],2));
draw(Circle(O[2],4));
draw((0.7*A)--(1.2*D));
draw((0.7*B)--(1.2*C));
draw(O[1]--O[2]);
draw(A--O[1]);
draw(B--O[1]);
draw(C--O[2]);
draw(D--O[2]);
label("$A$", A, NW);
label("$B$", B, SW);
label("$C$", C, SW);
label("$D$", D, NW);
dot("$O$", O[1], SE);
dot("$P$", O[2], SE);
label("$2$", (A + O[1])/2, E);
label("$4$", (D + O[2])/2, E);[/asy]
$ \textbf{(A) } 18\sqrt {3} \qquad \textbf{(B) } 24\sqrt {2} \qquad \textbf{(C) } 36 \qquad \textbf{(D) } 24\sqrt {3} \qquad \textbf{(E) } 32\sqrt {2}$
2022 Iran MO (2nd round), 6
we have an isogonal triangle $ABC$ such that $BC=AB$. take a random $P$ on the altitude from $B$ to $AC$.
The circle $(ABP)$ intersects $AC$ second time in $M$. Take $N$ such that it's on the segment $AC$ and $AM=NC$ and $M \neq N$.The second intersection of $NP$ and circle $(APB)$ is $X$ , ($X \neq P$) and the second intersection of $AB$ and circle $(APN)$ is $Y$ ,($Y \neq A$).The tangent from $A$ to the circle $(APN)$ intersects the altitude from $B$ at $Z$.
Prove that $CZ$ is tangent to circle $(PXY)$.
1993 Romania Team Selection Test, 2
Let $ABC$ be a triangle inscribed in the circle $\mathcal{C}(O,R)$ and circumscribed to the circle $\mathcal{C}(L,r)$. Denote $d=\dfrac{Rr}{R+r}$. Show that there exists a triangle $DEF$ such that for any interior point $M$ in $ABC$ there exists a point $X$ on the sides of $DEF$ such that $MX\le d$.
[i]Dan Brânzei[/i]
2002 Iran MO (3rd Round), 7
In triangle $ABC$, $AD$ is angle bisector ($D$ is on $BC$) if $AB+AD=CD$ and $AC+AD=BC$, what are the angles of $ABC$?
2011 JHMT, 3
In a unit cube $ABCD - EFGH$, an equilateral triangle $BDG$ cuts out a circle from the circumsphere of the cube. Find the area of the circle.
2024 International Zhautykov Olympiad, 2
Circles $\Omega$ and $\Gamma$ meet at points $A$ and $B$. The line containing their centres intersects $\Omega$ and $\Gamma$ at point $P$ and $Q$, respectively, such that these points lie on same side of the line $AB$ and point $Q$ is closer to $AB$ than point $P$. The circle $\delta$ lies on the same side of the line $AB$ as $P$ and $Q$, touches the segment $AB$ at point $D$ and touches $\Gamma$ at point $T$. The line $PD$ meets $\delta$ and $\Omega$ again at points $K$ and $L$, respectively. Prove that $\angle QTK=\angle DTL$
2008 Tournament Of Towns, 4
Let $ABCD$ be a non-isosceles trapezoid. Define a point $A1$ as intersection of circumcircle of triangle $BCD$ and line $AC$. (Choose $A_1$ distinct from $C$). Points $B_1, C_1, D_1$ are defined in similar way. Prove that $A_1B_1C_1D_1$ is a trapezoid as well.
2010 Princeton University Math Competition, 1
As in the following diagram, square $ABCD$ and square $CEFG$ are placed side by side (i.e. $C$ is between $B$ and $E$ and $G$ is between $C$ and $D$). If $CE = 14$, $AB > 14$, compute the minimal area of $\triangle AEG$.
[asy]
size(120); defaultpen(linewidth(0.7)+fontsize(10));
pair D2(real x, real y) {
pair P = (x,y);
dot(P,linewidth(3)); return P;
}
int big = 30, small = 14;
filldraw((0,big)--(big+small,0)--(big,small)--cycle, rgb(0.9,0.5,0.5));
draw(scale(big)*unitsquare); draw(shift(big,0)*scale(small)*unitsquare);
label("$A$",D2(0,big),NW);
label("$B$",D2(0,0),SW);
label("$C$",D2(big,0),SW);
label("$D$",D2(big,big),N);
label("$E$",D2(big+small,0),SE);
label("$F$",D2(big+small,small),NE);
label("$G$",D2(big,small),NE);
[/asy]
2021 Spain Mathematical Olympiad, 1
Vertices $A, B, C$ of a equilateral triangle of side $1$ are in the surface of a sphere with radius $1$ and center $O$. Let $D$ be the orthogonal projection of $A$ on the plane $\alpha$ determined by points $B, C, O$. Let $N$ be one of the intersections of the line perpendicular to $\alpha$ passing through $O$ with the sphere. Find the angle $\angle DNO$.
1953 AMC 12/AHSME, 49
The coordinates of $ A,B$ and $ C$ are $ (5,5),(2,1)$ and $ (0,k)$ respectively. The value of $ k$ that makes $ \overline{AC}\plus{}\overline{BC}$ as small as possible is:
$ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 4\frac{1}{2} \qquad\textbf{(C)}\ 3\frac{6}{7} \qquad\textbf{(D)}\ 4\frac{5}{6} \qquad\textbf{(E)}\ 2\frac{1}{7}$
May Olympiad L2 - geometry, 2008.2
Let $ABCD$ be a rectangle and $P$ be a point on the side$ AD$ such that $\angle BPC = 90^o$. The perpendicular from $A$ on $BP$ cuts $BP$ at $M$ and the perpendicular from $D$ on $CP$ cuts $CP$ in $N$. Show that the center of the rectangle lies in the $MN$ segment.
2017 Princeton University Math Competition, B2
A kite is inscribed in a circle with center $O$ and radius $60$. The diagonals of the kite meet at a point $P$, and $OP$ is an integer. The minimum possible area of the kite can be expressed in the form $a\sqrt{b}$, where $a$ and $b$ are positive integers and $b$ is squarefree. Find $a+b$.
2018 Stanford Mathematics Tournament, 1
Point $E$ is on side $CD$ of rectangle $ABCD$ such that $\frac{CE}{DE} =\frac{2}{5}.$ If the area of triangle $BCE$ is $30$, what is the area of rectangle $ABCD$?
2021 AMC 12/AHSME Spring, 5
The point $P(a,b)$ in the $xy$-plane is first rotated counterclockwise by $90^{\circ}$ around the point $(1,5)$ and then reflected about the line $y=-x$. The image of $P$ after these two transformations is at $(-6,3)$. What is $b-a$?
$\textbf{(A) }1 \qquad \textbf{(B) }3 \qquad \textbf{(C) }5 \qquad \textbf{(D) }7 \qquad \textbf{(E) }9$
JOM 2015 Shortlist, G5
Let $ ABCD $ be a convex quadrilateral. Let angle bisectors of $ \angle B $ and $ \angle C $ intersect at $ E $. Let $ AB $ intersect $ CD $ at $ F $.
Prove that if $ AB+CD=BC $, then $A,D,E,F$ is cyclic.
2019 Junior Balkan MO, 3
Triangle $ABC$ is such that $AB < AC$. The perpendicular bisector of side $BC$ intersects lines $AB$ and $AC$ at points $P$ and $Q$, respectively. Let $H$ be the orthocentre of triangle $ABC$, and let $M$ and $N$ be the midpoints of segments $BC$ and $PQ$, respectively. Prove that lines $HM$ and $AN$ meet on the circumcircle of $ABC$.
2021 Indonesia MO, 7
Given $\triangle ABC$ with circumcircle $\ell$. Point $M$ in $\triangle ABC$ such that $AM$ is the angle bisector of $\angle BAC$. Circle with center $M$ and radius $MB$ intersects $\ell$ and $BC$ at $D$ and $E$ respectively, $(B \not= D, B \not= E)$. Let $P$ be the midpoint of arc $BC$ in $\ell$ that didn't have $A$. Prove that $AP$ angle bisector of $\angle DPE$ if and only if $\angle B = 90^{\circ}$.
Ukrainian TYM Qualifying - geometry, 2015.18
Is it possible to divide a circle by three chords, different from diameters, into several equal parts?
2021 Canadian Mathematical Olympiad Qualification, 4
Let $O$ be the centre of the circumcircle of triangle $ABC$ and let $I$ be the centre of the incircle of triangle $ABC$. A line passing through the point $I$ is perpendicular to the line $IO$ and passes through the incircle at points $P$ and $Q$. Prove that the diameter of the circumcircle is equal to the perimeter of triangle $OPQ$.
2016 India Regional Mathematical Olympiad, 5
Let \(ABC\) be a right-angled triangle with \(\angle B=90^{\circ}\). Let \(I\) be the incentre if \(ABC\). Extend \(AI\) and \(CI\); let them intersect \(BC\) in \(D\) and \(AB\) in \(E\) respectively. Draw a line perpendicular to \(AI\) at \(I\) to meet \(AC\) in \(J\), draw a line perpendicular to \(CI\) at \(I\) to meet \(AC\) at \(K\). Suppose \(DJ=EK\). Prove that \(BA=BC\).
1987 AMC 8, 5
The area of the rectangular region is
[asy]
draw((0,0)--(4,0)--(4,2.2)--(0,2.2)--cycle,linewidth(.5 mm));
label(".22 m",(4,1.1),E);
label(".4 m",(2,0),S);
[/asy]
$\text{(A)}\ \text{.088 m}^2 \qquad \text{(B)}\ \text{.62 m}^2 \qquad \text{(C)}\ \text{.88 m}^2 \qquad \text{(D)}\ \text{1.24 m}^2 \qquad \text{(E)}\ \text{4.22 m}^2$
Russian TST 2022, P2
Let $ABCD$ be a cyclic quadrilateral whose sides have pairwise different lengths. Let $O$ be the circumcenter of $ABCD$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $B_1$ and $D_1$, respectively. Let $O_B$ be the center of the circle which passes through $B$ and is tangent to $\overline{AC}$ at $D_1$. Similarly, let $O_D$ be the center of the circle which passes through $D$ and is tangent to $\overline{AC}$ at $B_1$.
Assume that $\overline{BD_1} \parallel \overline{DB_1}$. Prove that $O$ lies on the line $\overline{O_BO_D}$.
Ukraine Correspondence MO - geometry, 2004.8
The extensions of the sides $AB$ and $CD$ of the trapezoid $ABCD$ intersect at point $E$. Denote by $H$ and $G$ the midpoints of $BD$ and $AC$. Find the ratio of the area $AEGH$ to the area $ABCD$.