This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2014 Belarus Team Selection Test, 1

Let $O$ be the circumcenter of an acute-angled triangle $ABC$. Let $AH$ be the altitude of this triangle, $M,N,P,Q$ be the midpoints of the segments $AB, AC, BH, CH$, respectively. Let $\omega_1$ and $\omega_2$ be the circumferences of the triangles $AMN$ and $POQ$. Prove that one of the intersection points of $\omega_1$ and $\omega_2$ belongs to the altitude $AH$. (A. Voidelevich)

2005 USAMTS Problems, 3

Let $r$ be a nonzero real number. The values of $z$ which satisfy the equation \[ r^4z^4 + (10r^6-2r^2)z^2-16r^5z+(9r^8+10r^4+1) = 0 \] are plotted on the complex plane (i.e. using the real part of each root as the x-coordinate and the imaginary part as the y-coordinate). Show that the area of the convex quadrilateral with these points as vertices is independent of $r$, and find this area.

2023 Austrian MO National Competition, 2

Tags: geometry
Given is a triangle $ABC$. The points $P, Q$ lie on the extensions of $BC$ beyond $B, C$, respectively, such that $BP=BA$ and $CQ=CA$. Prove that the circumcenter of triangle $APQ$ lies on the angle bisector of $\angle BAC$.

2021 Moldova Team Selection Test, 3

Acute triangle $ABC$ with $AB>BC$ is inscribed in circle $\Omega$. Points $D$ and $E$, that lie on $(BC)$ and $(AB)$ are the feet of altitudes from $A$ and $C$ in triangle $ABC$, and $M$ is the midpoint of the segment $DE$. Half-line $(AM$ intersects the circle $\Omega$ for the second time in $N$. Show that the circumcenter of triangle $MDN$ lies on the line $BC$.

1992 Tournament Of Towns, (356) 5

Tags: geometry
The bisector of the angle $A$ of triangle $ABC$ intersects its circumscribed circle at the point $D$. Suppose $P$ is the point symmetric to the incentre of the triangle with respect to the midpoint of the side $BC$, and $M$ is the second intersection point of the line $PD$ with the circumscribed circle. Prove that one of the distances $AM$, $BM$, $CM$ is equal to the sum of two other distances. (VO Gordon)

2020 South Africa National Olympiad, 2

Tags: rhombus , geometry , square , area
Let $S$ be a square with sides of length $2$ and $R$ be a rhombus with sides of length $2$ and angles measuring $60^\circ$ and $120^\circ$. These quadrilaterals are arranged to have the same centre and the diagonals of the rhombus are parallel to the sides of the square. Calculate the area of the region on which the figures overlap.

2005 District Olympiad, 2

Let $ABCD$ and $ABEF$ be two squares situated in two perpendicular planes and let $O$ be the intersection of the lines $AE$ and $BF$. If $AB=4$ compute: a) the distance from $B$ to the line of intersection between the planes $(DOC)$ and $(DAF)$; b) the distance between the lines $AC$ and $BF$.

2019 Iran Team Selection Test, 4

Given an acute-angled triangle $ABC$ with orthocenter $H$. Reflection of nine-point circle about $AH$ intersects circumcircle at points $X$ and $Y$. Prove that $AH$ is the external bisector of $\angle XHY$. [i]Proposed by Mohammad Javad Shabani[/i]

1986 India National Olympiad, 9

Show that among all quadrilaterals of a given perimeter the square has the largest area.

Kyiv City MO Juniors Round2 2010+ geometry, 2017.7.4

On the sides $AD$ and $BC$ of a rectangle $ABCD$ select points $M, N$ and $P, Q$ respectively such that $AM = MN = ND = BP = PQ = QC$. On segment $QC$ selected point $X$, different from the ends of the segment. Prove that the perimeter of $\vartriangle ANX$ is more than the perimeter of $\vartriangle MDX$.

1971 AMC 12/AHSME, 9

An uncrossed belt is fitted without slack around two circular pulleys with radii of $14$ inches and $4$ inches. If the distance between the points of contact of the belt with the pulleys is $24$ inches, then the distance between the centers of the pulleys in inches is $\textbf{(A) }24\qquad\textbf{(B) }2\sqrt{119}\qquad\textbf{(C) }25\qquad\textbf{(D) }26\qquad \textbf{(E) }4\sqrt{35}$

2006 Indonesia MO, 3

Let $ S$ be the set of all triangles $ ABC$ which have property: $ \tan A,\tan B,\tan C$ are positive integers. Prove that all triangles in $ S$ are similar.

2023 Serbia National Math Olympiad, 1

Tags: geometry
Given is a triangle $ABC$ with circumcenter $O$ and orthocenter $H$. If $O_a, O_b, O_c$ denote the circumcenters of $\triangle AOH$, $\triangle BOH$, $\triangle COH$, then prove that $AO_a, BO_b, CO_c$ are concurrent.

2017 Sharygin Geometry Olympiad, 6

A median of an acute-angled triangle dissects it into two triangles. Prove that each of them can be covered by a semidisc congruent to a half of the circumdisc of the initial triangle.

2017 Taiwan TST Round 1, 2

Tags: geometry
Let $B = (-1, 0)$ and $C = (1, 0)$ be fixed points on the coordinate plane. A nonempty, bounded subset $S$ of the plane is said to be [i]nice[/i] if $\text{(i)}$ there is a point $T$ in $S$ such that for every point $Q$ in $S$, the segment $TQ$ lies entirely in $S$; and $\text{(ii)}$ for any triangle $P_1P_2P_3$, there exists a unique point $A$ in $S$ and a permutation $\sigma$ of the indices $\{1, 2, 3\}$ for which triangles $ABC$ and $P_{\sigma(1)}P_{\sigma(2)}P_{\sigma(3)}$ are similar. Prove that there exist two distinct nice subsets $S$ and $S'$ of the set $\{(x, y) : x \geq 0, y \geq 0\}$ such that if $A \in S$ and $A' \in S'$ are the unique choices of points in $\text{(ii)}$, then the product $BA \cdot BA'$ is a constant independent of the triangle $P_1P_2P_3$.

I Soros Olympiad 1994-95 (Rus + Ukr), 11.3

It is known that in the triangle $ABC$, $ 2 \angle BAC + 3 \angle ABC= 180^o$. Prove that $4(BC + CA)< 5AB$.

Gheorghe Țițeica 2025, P3

Two regular pentagons $ABCDE$ and $AEKPL$ are given in space, such that $\angle DAK = 60^{\circ}$. Let $M$, $N$ and $S$ be the midpoints of $AE$, $CD$ and $EK$. Prove that: [list=a] [*] $\triangle NMS$ is a right triangle; [*] planes $(ACK)$ and $(BAL)$ are perpendicular. [/list] [i]Ukraine Olympiad[/i]

2009 Estonia Team Selection Test, 4

Points $A', B', C'$ are chosen on the sides $BC, CA, AB$ of triangle $ABC$, respectively, so that $\frac{|BA'|}{|A'C|}=\frac{|CB'|}{|B'A|}=\frac{|AC'|}{|C'B|}$. The line which is parallel to line $B'C'$ and goes through point $A$ intersects the lines $AC$ and $AB$ at $P$ and $Q$, respectively. Prove that $\frac{|PQ|}{|B'C'|} \ge 2$

2014 Czech-Polish-Slovak Junior Match, 2

Let $ABCD$ be a parallelogram with $\angle BAD<90^o$ and $AB> BC$ . The angle bisector of $BAD$ intersects line $CD$ at point $P$ and line $BC$ at point $Q$. Prove that the center of the circle circumscirbed around the triangle $CPQ$ is equidistant from points $B$ and $D$.

2014 India IMO Training Camp, 1

In a triangle $ABC$, with $AB\neq AC$ and $A\neq 60^{0},120^{0}$, $D$ is a point on line $AC$ different from $C$. Suppose that the circumcentres and orthocentres of triangles $ABC$ and $ABD$ lie on a circle. Prove that $\angle ABD=\angle ACB$.

1996 ITAMO, 3

Given a cube of unit side. Let $A$ and $B$ be two opposite vertex. Determine the radius of the sphere, with center inside the cube, tangent to the three faces of the cube with common point $A$ and tangent to the three sides with common point $B$.

2021 China Team Selection Test, 2

Tags: geometry , harmonic
Let triangle$ABC(AB<AC)$ with incenter $I$ circumscribed in $\odot O$. Let $M,N$ be midpoint of arc $\widehat{BAC}$ and $\widehat{BC}$, respectively. $D$ lies on $\odot O$ so that $AD//BC$, and $E$ is tangency point of $A$-excircle of $\bigtriangleup ABC$. Point $F$ is in $\bigtriangleup ABC$ so that $FI//BC$ and $\angle BAF=\angle EAC$. Extend $NF$ to meet $\odot O$ at $G$, and extend $AG$ to meet line $IF$ at L. Let line $AF$ and $DI$ meet at $K$. Proof that $ML\bot NK$.

2014 NIMO Problems, 2

How many $2 \times 2 \times 2$ cubes must be added to a $8 \times 8 \times 8$ cube to form a $12 \times 12 \times 12$ cube? [i]Proposed by Evan Chen[/i]

2011 Morocco TST, 3

The vertices $X, Y , Z$ of an equilateral triangle $XYZ$ lie respectively on the sides $BC, CA, AB$ of an acute-angled triangle $ABC.$ Prove that the incenter of triangle $ABC$ lies inside triangle $XYZ.$ [i]Proposed by Nikolay Beluhov, Bulgaria[/i]

2022 CCA Math Bonanza, T3

The smallest possible volume of a cylinder that will fit nine spheres of radius 1 can be expressed as $x\pi$ for some value of $x$. Compute $x$. [i]2022 CCA Math Bonanza Team Round #3[/i]