Found problems: 25757
1967 IMO Longlists, 12
Given a segment $AB$ of the length 1, define the set $M$ of points in the
following way: it contains two points $A,B,$ and also all points obtained from $A,B$ by iterating the following rule: With every pair of points $X,Y$ the set $M$ contains also the point $Z$ of the segment $XY$ for which $YZ = 3XZ.$
1998 Switzerland Team Selection Test, 8
Let $\vartriangle ABC$ be an equilateral triangle and let $P$ be a point in its interior. Let the lines $AP,BP,CP$ meet the sides $BC,CA,AB$ in the points $X,Y,Z$ respectively. Prove that $XY \cdot YZ\cdot ZX \ge XB\cdot YC\cdot ZA$.
MathLinks Contest 5th, 6.1
Let $ABC$ be a triangle and let $C$ be a circle that intersects the sides $BC, CA$ and $AB$ in the points $A_1, A_2, B_1, B_2$ and $C_1, C_2$ respectively. Prove that if $AA_1, BB_1$ and $CC_1$ are concurrent lines then $AA_2, BB_2$ and $CC_2$ are also concurrent lines.
2006 Tournament of Towns, 7
An ant craws along a closed route along the edges of a dodecahedron, never going backwards.
Each edge of the route is passed exactly twice. Prove that one of the edges is passed both times in the same direction. (Dodecahedron has $12$ faces in the shape of pentagon, $30$ edges and $20$ vertices; each vertex emitting 3 edges). (8)
Swiss NMO - geometry, 2017.5
Let $ABC$ be a triangle with $AC> AB$. Let $P$ be the intersection of $BC$ and the tangent through $A$ around the triangle $ABC$. Let $Q$ be the point on the straight line $AC$, so that $AQ = AB$ and $A$ is between $C$ and $Q$. Let $X$ and $Y$ be the center of $BQ$ and $AP$. Let $R$ be the point on $AP$ so that $AR = BP$ and $R$ is between $A$ and $P$. Show that $BR = 2XY$.
2009 Princeton University Math Competition, 6
In the following diagram (not to scale), $A$, $B$, $C$, $D$ are four consecutive vertices of an 18-sided regular polygon with center $O$. Let $P$ be the midpoint of $AC$ and $Q$ be the midpoint of $DO$. Find $\angle OPQ$ in degrees.
[asy]
pathpen = rgb(0,0,0.6)+linewidth(0.7); pointpen = black+linewidth(3); pointfontpen = fontsize(10); pen dd = rgb(0,0,0.6)+ linewidth(0.7) + linetype("4 4"); real n = 10, start = 360/n*6-15;
pair O=(0,0), A=dir(start), B=dir(start+360/n), C=dir(start+2*360/n), D=dir(start+3*360/n), P=(A+C)/2, Q=(O+D)/2; D(D("O",O,NE)--D("A",A,W)--D("B",B,SW)--D("C",C,S)--D("D",D,SE)--O--D("P",P,1.6*dir(95))--D("Q",Q,NE)); D(A--C); D(A--(A+dir(start-360/n))/2, dd); D(D--(D+dir(start+4*360/n))/2, dd);
[/asy]
2020 Novosibirsk Oral Olympiad in Geometry, 2
Vitya cut the chessboard along the borders of the cells into pieces of the same perimeter. It turned out that not all of the received parts are equal. What is the largest possible number of parts that Vitya could get?
LMT Guts Rounds, 2016
[u]Round 1[/u]
[b]p1.[/b] Today, the date $4/9/16$ has the property that it is written with three perfect squares in strictly increasing order. What is the next date with this property?
[b]p2.[/b] What is the greatest integer less than $100$ whose digit sumis equal to its greatest prime factor?
[b]p3.[/b] In chess, a bishop can only move diagonally any number of squares. Find the number of possible squares a bishop starting in a corner of a $20\times 16$ chessboard can visit in finitely many moves, including the square it stars on.
[u]Round 2 [/u]
[b]p4.[/b] What is the fifth smallest positive integer with at least $5$ distinct prime divisors?
[b]p5.[/b] Let $\tau (n)$ be the number of divisors of a positive integer $n$, including $1$ and $n$. Howmany positive integers $n \le 1000$ are there such that $\tau (n) > 2$ and $\tau (\tau (n)) = 2$?
[b]p6.[/b] How many distinct quadratic polynomials $P(x)$ with leading coefficient $1$ exist whose roots are positive integers and whose coefficients sum to $2016$?
[u]Round 3[/u]
[b]p7.[/b] Find the largest prime factor of $112221$.
[b]p8.[/b] Find all ordered pairs of positive integers $(a,b)$ such that $\frac{a^2b^2+1}{ab-1}$ is an integer.
[b]p9.[/b] Suppose $f : Z \to Z$ is a function such that $f (2x)= f (1-x)+ f (1-x)$ for all integers $x$. Find the value of $f (2) f (0) +f (1) f (6)$.
[u]Round 4[/u]
[b]p10.[/b] For any six points in the plane, what is the maximum number of isosceles triangles that have three of the points as vertices?
[b]p11.[/b] Find the sum of all positive integers $n$ such that $\sqrt{n+ \sqrt{n -25}}$ is also a positive integer.
[b]p12.[/b] Distinct positive real numbers are written at the vertices of a regular $2016$-gon. On each diagonal and edge of the $2016$-gon, the sum of the numbers at its endpoints is written. Find the minimum number of distinct numbers that are now written, including the ones at the vertices.
PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h3158474p28715078]here[/url]. and 9-12 [url=https://artofproblemsolving.com/community/c3h3162282p28763571]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022 Thailand Mathematical Olympiad, 1
Let $BC$ be a chord of a circle $\Gamma$ and $A$ be a point inside $\Gamma$ such that $\angle BAC$ is acute. Outside $\triangle ABC$, construct two isosceles triangles $\triangle ACP$ and $\triangle ABR$ such that $\angle ACP$ and $\angle ABR$ are right angles. Let lines $BA$ and $CA$ meet $\Gamma$ again at points $E$ and $F$, respectively. Let lines $EP$ and $FR$ meet $\Gamma$ again at points $X$ and $Y$, respectively. Prove that $BX=CY$.
2007 Nordic, 4
A line through $A$ intersects a circle at points $B,C$ with $B$ between $A,C$. The two tangents from $A$ intersect the circle at $S,T$. $ST$ and $AC$ intersect at $P$. Show that $\frac{AP}{PC}=2\frac{AB}{BC}$.
VI Soros Olympiad 1999 - 2000 (Russia), 11.8
Prove that the plane dividing in equal proportions the surface area and volume of the circumscribed polyhedron passes through the center of the sphere inscribed in this polyhedron.
1996 Hungary-Israel Binational, 2
$ n>2$ is an integer such that $ n^2$ can be represented as a difference of cubes of 2 consecutive positive integers. Prove that $ n$ is a sum of 2 squares of positive integers, and that such $ n$ does exist.
2011 CentroAmerican, 6
Let $ABC$ be an acute triangle and $D$, $E$, $F$ be the feet of the altitudes through $A$, $B$, $C$ respectively. Call $Y$ and $Z$ the feet of the perpendicular lines from $B$ and $C$ to $FD$ and $DE$, respectively. Let $F_1$ be the symmetric of $F$ with respect to $E$ and $E_1$ be the symmetric of $E$ with respect to $F$. If $3EF=FD+DE$, prove that $\angle BZF_1=\angle CYE_1$.
2015 Indonesia MO Shortlist, G8
$ABC$ is an acute triangle with $AB> AC$. $\Gamma_B$ is a circle that passes through $A,B$ and is tangent to $AC$ on $A$. Define similar for $ \Gamma_C$. Let $D$ be the intersection $\Gamma_B$ and $\Gamma_C$ and $M$ be the midpoint of $BC$. $AM$ cuts $\Gamma_C$ at $E$. Let $O$ be the center of the circumscibed circle of the triangle $ABC$. Prove that the circumscibed circle of the triangle $ODE$ is tangent to $\Gamma_B$.
2011 Sharygin Geometry Olympiad, 3
Let $ABC$ be a triangle with $\angle{A} = 60^\circ$. The midperpendicular of segment $AB$ meets line $AC$ at point $C_1$. The midperpendicular of segment $AC$ meets line $AB$ at point $B_1$. Prove that line $B_1C_1$ touches the incircle of triangle $ABC$.
V Soros Olympiad 1998 - 99 (Russia), 10.9
A triangle of area $1$ is cut out of paper. Prove that it can be bent along a straight segment so that the area of the resulting figure is less than $s_0$, where $s_0=\frac{\sqrt5-1}{2}$.
Note. The value $s_0$ specified in the condition can be reduced (the smallest value of$s_0$ is unknown to the authors of the problem). If you manage to do this (and justify it), write.
1960 IMO, 7
An isosceles trapezoid with bases $a$ and $c$ and altitude $h$ is given.
a) On the axis of symmetry of this trapezoid, find all points $P$ such that both legs of the trapezoid subtend right angles at $P$;
b) Calculate the distance of $p$ from either base;
c) Determine under what conditions such points $P$ actually exist. Discuss various cases that might arise.
2016 BMT Spring, 3
Consider an equilateral triangle and square, both with area $1$. What is the product of their perimeters?
1994 Spain Mathematical Olympiad, 2
Let $Oxyz$ be a trihedron whose edges $x,y, z$ are mutually perpendicular. Let $C$ be the point on the ray $z$ with $OC = c$. Points $P$ and $Q$ vary on the rays $x$ and $y$ respectively in such a way that $OP+OQ = k$ is constant. For every $P$ and $Q$, the circumcenter of the sphere through $O,C,P,Q$ is denoted by $W$. Find the locus of the projection of $W$ on the plane O$xy$. Also find the locus of points $W$.
2024 Caucasus Mathematical Olympiad, 8
There are two equal circles of radius $1$ placed inside the triangle $ABC$ with side $BC = 6$. The circles are tangent to each other, one is inscribed in angle $B$, the other one is inscribed in angle $C$.
(a) Prove that the centroid $M$ of the triangle $ABC$ does not lie inside any of the given circles.
(b) Prove that if $M$ lies on one of the circles, then the triangle $ABC$ is isosceles.
1996 AIME Problems, 13
In triangle $ABC, AB=\sqrt{30}, AC=\sqrt{6},$ and $BC=\sqrt{15}.$ There is a point $D$ for which $\overline{AD}$ bisects $\overline{BC}$ and $\angle ADB$ is a right angle. The ratio \[ \frac{\text{Area}(\triangle ADB)}{\text{Area}(\triangle ABC)} \] can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2020 EGMO, 3
Let $ABCDEF$ be a convex hexagon such that $\angle A = \angle C = \angle E$ and $\angle B = \angle D = \angle F$ and the (interior) angle bisectors of $\angle A, ~\angle C,$ and $\angle E$ are concurrent.
Prove that the (interior) angle bisectors of $\angle B, ~\angle D, $ and $\angle F$ must also be concurrent.
[i]Note that $\angle A = \angle FAB$. The other interior angles of the hexagon are similarly described.[/i]
2024 Ukraine National Mathematical Olympiad, Problem 6
Cyclic quadrilateral $ABCD$ is such that $\angle BAD = 2\angle ADC$ and $CD = 2BC$. Let $H$ be the projection of $C$ onto $AD$. Prove that $BH \parallel CD$.
[i]Proposed by Fedir Yudin, Anton Trygub[/i]
LMT Accuracy Rounds, 2023 S4
Rectangle $ABCD$ has side lengths $AB = 3$ and $BC = 7$. Let $E$ be a point on $BC$, and let $F$ be the intersection of $DE$ and $AC$. Given that $[CDF] = 4$, find $\frac{DF}{FE}$ .
2003 Denmark MO - Mohr Contest, 1
In a right-angled triangle, the sum $a + b$ of the sides enclosing the right angle equals $24$ while the length of the altitude $h_c$ on the hypotenuse $c$ is $7$. Determine the length of the hypotenuse.