This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2018 Iranian Geometry Olympiad, 1

There are three rectangles in the following figure. The lengths of some segments are shown. Find the length of the segment $XY$ . [img]https://2.bp.blogspot.com/-x7GQfMFHzAQ/W6K57utTEkI/AAAAAAAAJFQ/1-5WhhuerMEJwDnWB09sTemNLdJX7_OOQCK4BGAYYCw/s320/igo%2B2018%2Bintermediate%2Bp1.png[/img] Proposed by Hirad Aalipanah

2010 Regional Olympiad of Mexico Northeast, 3

Tags: geometry , incenter
In triangle $ABC$, $\angle BAC= 60^o$. Angle bisector of $\angle ABC$ meets side $AC$ at $X$ and angle bisector of $\angle BCA$ meets side $AB$ at $Y$. Prove that if $I$ is the incenter of triangle $ABC$, then $IX=IY$.

STEMS 2024 Math Cat A, P3

Tags: geometry
Let $ABC$ be a triangle. Let $I$ be the Incenter of $ABC$ and $S$ be the midpoint of arc $BAC$. Define $IA$ as the $A$-excenter wrt $ABC$. Define $\omega$ to be the circle centred at $S$ with radius $SB$. Let $AI_A \cap \omega = X$, $Y$. Show that $\angle BCX = \angle ACY$.

2001 Korea - Final Round, 2

In a triangle $ABC$ with $\angle B < 45^{\circ}$, $D$ is a point on $BC$ such that the incenter of $\triangle ABD$ coincides with the circumcenter $O$ of $\triangle ABC$. Let $P$ be the intersection point of the tangent lines to the circumcircle $\omega$ of $\triangle AOC$ at points $A$ and $C$. The lines $AD$ and $CO$ meet at $Q$. The tangent to $\omega$ at $O$ meets $PQ$ at $X$. Prove that $XO=XD$.

2008 HMNT, 5

Joe has a triangle with area $\sqrt{3}.$ What's the smallest perimeter it could have?

2014 India National Olympiad, 1

In a triangle $ABC$, let $D$ be the point on the segment $BC$ such that $AB+BD=AC+CD$. Suppose that the points $B$, $C$ and the centroids of triangles $ABD$ and $ACD$ lie on a circle. Prove that $AB=AC$.

2009 Sharygin Geometry Olympiad, 12

Let $ CL$ be a bisector of triangle $ ABC$. Points $ A_1$ and $ B_1$ are the reflections of $ A$ and $ B$ in $ CL$, points $ A_2$ and $ B_2$ are the reflections of $ A$ and $ B$ in $ L$. Let $ O_1$ and $ O_2$ be the circumcenters of triangles $ AB_1B_2$ and $ BA_1A_2$ respectively. Prove that angles $ O_1CA$ and $ O_2CB$ are equal.

2017 Korea Junior Math Olympiad, 2

Let there be a scalene triangle $ABC$, and its incircle hits $BC, CA, AB$ at $D, E, F$. The perpendicular bisector of $BC$ meets the circumcircle of $ABC$ at $P, Q$, where $P$ is on the same side with $A$ with respect to $BC$. Let the line parallel to $AQ$ and passing through $D$ meet $EF$ at $R$. Prove that the intersection between $EF$ and $PQ$ lies on the circumcircle of $BCR$.

2005 Sharygin Geometry Olympiad, 2

Cut a cross made up of five identical squares into three polygons, equal in area and perimeter.

2005 AIME Problems, 8

Circles $C_1$ and $C_2$ are externally tangent, and they are both internally tangent to circle $C_3$. The radii of $C_1$ and $C_2$ are $4$ and $10$, respectively, and the centers of the three circles are all collinear. A chord of $C_3$ is also a common external tangent of $C_1$ and $C_2$. Given that the length of the chord is $\frac{m\sqrt{n}}{p}$ where $m,n,$ and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime, find $m+n+p$.

2019 LMT Spring, Individual

[b]p1.[/b] Compute $2020 \cdot \left( 2^{(0\cdot1)} + 9 - \frac{(20^1)}{8}\right)$. [b]p2.[/b] Nathan has five distinct shirts, three distinct pairs of pants, and four distinct pairs of shoes. If an “outfit” has a shirt, pair of pants, and a pair of shoes, how many distinct outfits can Nathan make? [b]p3.[/b] Let $ABCD$ be a rhombus such that $\vartriangle ABD$ and $\vartriangle BCD$ are equilateral triangles. Find the angle measure of $\angle ACD$ in degrees. [b]p4.[/b] Find the units digit of $2019^{2019}$. [b]p5.[/b] Determine the number of ways to color the four vertices of a square red, white, or blue if two colorings that can be turned into each other by rotations and reflections are considered the same. [b]p6.[/b] Kathy rolls two fair dice numbered from $1$ to $6$. At least one of them comes up as a $4$ or $5$. Compute the probability that the sumof the numbers of the two dice is at least $10$. [b]p7.[/b] Find the number of ordered pairs of positive integers $(x, y)$ such that $20x +19y = 2019$. [b]p8.[/b] Let $p$ be a prime number such that both $2p -1$ and $10p -1$ are prime numbers. Find the sum of all possible values of $p$. [b]p9.[/b] In a square $ABCD$ with side length $10$, let $E$ be the intersection of $AC$ and $BD$. There is a circle inscribed in triangle $ABE$ with radius $r$ and a circle circumscribed around triangle $ABE$ with radius $R$. Compute $R -r$ . [b]p10.[/b] The fraction $\frac{13}{37 \cdot 77}$ can be written as a repeating decimal $0.a_1a_2...a_{n-1}a_n$ with $n$ digits in its shortest repeating decimal representation. Find $a_1 +a_2 +...+a_{n-1}+a_n$. [b]p11.[/b] Let point $E$ be the midpoint of segment $AB$ of length $12$. Linda the ant is sitting at $A$. If there is a circle $O$ of radius $3$ centered at $E$, compute the length of the shortest path Linda can take from $A$ to $B$ if she can’t cross the circumference of $O$. [b]p12.[/b] Euhan and Minjune are playing tennis. The first one to reach $25$ points wins. Every point ends with Euhan calling the ball in or out. If the ball is called in, Minjune receives a point. If the ball is called out, Euhan receives a point. Euhan always makes the right call when the ball is out. However, he has a $\frac34$ chance of making the right call when the ball is in, meaning that he has a $\frac14$ chance of calling a ball out when it is in. The probability that the ball is in is equal to the probability that the ball is out. If Euhan won, determine the expected number of wrong callsmade by Euhan. [b]p13.[/b] Find the number of subsets of $\{1, 2, 3, 4, 5, 6,7\}$ which contain four consecutive numbers. [b]p14.[/b] Ezra and Richard are playing a game which consists of a series of rounds. In each round, one of either Ezra or Richard receives a point. When one of either Ezra or Richard has three more points than the other, he is declared the winner. Find the number of games which last eleven rounds. Two games are considered distinct if there exists a round in which the two games had different outcomes. [b]p15.[/b] There are $10$ distinct subway lines in Boston, each of which consists of a path of stations. Using any $9$ lines, any pair of stations are connected. However, among any $8$ lines there exists a pair of stations that cannot be reached from one another. It happens that the number of stations is minimized so this property is satisfied. What is the average number of stations that each line passes through? [b]p16.[/b] There exist positive integers $k$ and $3\nmid m$ for which $$1 -\frac12 + \frac13 - \frac14 +...+ \frac{1}{53}-\frac{1}{54}+\frac{1}{55}=\frac{3^k \times m}{28\times 29\times ... \times 54\times 55}.$$ Find the value $k$. [b]p17.[/b] Geronimo the giraffe is removing pellets from a box without replacement. There are $5$ red pellets, $10$ blue pellets, and $15$ white pellets. Determine the probability that all of the red pellets are removed before all the blue pellets and before all of the white pellets are removed. [b]p18.[/b] Find the remainder when $$70! \left( \frac{1}{4 \times 67}+ \frac{1}{5 \times 66}+...+ \frac{1}{66\times 5}+ \frac{1}{67\times 4} \right)$$ is divided by $71$. [b]p19.[/b] Let $A_1A_2...A_{12}$ be the regular dodecagon. Let $X$ be the intersection of $A_1A_2$ and $A_5A_{11}$. Given that $X A_2 \cdot A_1A_2 = 10$, find the area of dodecagon. [b]p20.[/b] Evaluate the following infinite series: $$\sum^{\infty}_{n=1}\sum^{\infty}_{m=1} \frac{n \sec^2m -m \tan^2 n}{3^{m+n}(m+n)}$$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1962 All Russian Mathematical Olympiad, 013

Tags: area , geometry
Given points $A' ,B' ,C' ,D',$ on the extension of the $[AB], [BC], [CD], [DA]$ sides of the convex quadrangle $ABCD$, such, that the following pairs of vectors are equal: $$[BB']=[AB], [CC']=[BC], [DD']=[CD], [AA']=[DA].$$ Prove that the quadrangle $A'B'C'D'$ area is five times more than the quadrangle $ABCD$ area.

2018 Polish MO Finals, 1

An acute triangle $ABC$ in which $AB<AC$ is given. The bisector of $\angle BAC$ crosses $BC$ at $D$. Point $M$ is the midpoint of $BC$. Prove that the line though centers of circles escribed on triangles $ABC$ and $ADM$ is parallel to $AD$.

1971 Canada National Olympiad, 9

Two flag poles of height $h$ and $k$ are situated $2a$ units apart on a level surface. Find the set of all points on the surface which are so situated that the angles of elevation of the tops of the poles are equal.

2000 Brazil Team Selection Test, Problem 3

Tags: geometry
Let $BB',CC'$ be altitudes of $\triangle ABC$ and assume $AB$ ≠ $AC$.Let $M$ be the midpoint of $BC$ and $H$ be orhocenter of $\triangle ABC$ and $D$ be the intersection of $BC$ and $B'C'$.Show that $DH$ is perpendicular to $AM$.

2007 AMC 10, 10

Tags: geometry
The Dunbar family consists of a mother, a father, and some children. The average age of the members of the family is $ 20$, the father is $ 48$ years old, and the average age of the mother and children is $ 16$. How many children are in the family? $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6$

1984 Polish MO Finals, 5

A regular hexagon of side $1$ is covered by six unit disks. Prove that none of the vertices of the hexagon is covered by two (or more) discs.

2019 Irish Math Olympiad, 8

Consider a point $G$ in the interior of a parallelogram $ABCD$. A circle $\Gamma$ through $A$ and $G$ intersects the sides $AB$ and $AD$ for the second time at the points $E$ and $F$ respectively. The line $FG$ extended intersects the side $BC$ at $H$ and the line $EG$ extended intersects the side $CD$ at $I$. The circumcircle of triangle $HGI$ intersects the circle $\Gamma$ for the second time at $M \ne G$. Prove that $M$ lies on the diagonal $AC$.

2018 Purple Comet Problems, 2

Tags: geometry
A triangle with side lengths $16$, $18$, and $21$ has a circle with radius $6$ centered at each vertex. Find $n$ so that the total area inside the three circles but outside of the triangle is $n\pi$. [img]https://4.bp.blogspot.com/-dpCi7Gai3ZE/XoEaKo3C5wI/AAAAAAAALl8/KAuCVDT9R5MiIA_uTfRyoQmohEVw9cuVACK4BGAYYCw/s200/2018%2Bpc%2Bhs2.png[/img]

2009 Sharygin Geometry Olympiad, 4

Three parallel lines $d_a, d_b, d_c$ pass through the vertex of triangle $ABC$. The reflections of $d_a, d_b, d_c$ in $BC, CA, AB$ respectively form triangle $XYZ$. Find the locus of incenters of such triangles. (C.Pohoata)

2019 Harvard-MIT Mathematics Tournament, 10

Tags: geometry , hmmt
In triangle $ABC$, $AB = 13$, $BC = 14$, $CA = 15$. Squares $ABB_1A_2$, $BCC_1B_2$, $CAA_1B_2$ are constructed outside the triangle. Squares $A_1A_2A_3A_4$, $B_1B_2B_3B_4$ are constructed outside the hexagon $A_1A_2B_1B_2C_1C_2$. Squares $A_3B_4B_5A_6$, $B_3C_4C_5B_6$, $C_3A_4A_5C_6$ are constructed outside the hexagon $A_4A_3B_4B_3C_4C_3$. Find the area of the hexagon $A_5A_6B_5B_6C_5C_6$.

2005 National Olympiad First Round, 33

Let $K$ be the intersection of diagonals of cyclic quadrilateral $ABCD$, where $|AB|=|BC|$, $|BK|=b$, and $|DK|=d$. What is $|AB|$? $ \textbf{(A)}\ \sqrt{d^2 + bd} \qquad\textbf{(B)}\ \sqrt{b^2+bd} \qquad\textbf{(C)}\ \sqrt{2bd} \qquad\textbf{(D)}\ \sqrt{2(b^2+d^2-bd)} \qquad\textbf{(E)}\ \sqrt{bd} $

2023 Sharygin Geometry Olympiad, 10.6

Tags: geometry
Let $E$ be the projection of the vertex $C$ of a rectangle $ABCD$ to the diagonal $BD$. Prove that the common external tangents to the circles $AEB$ and $AED$ meet on the circle $AEC$.

2018 Nordic, 1

Let $k$ be a positive integer and $P$ a point in the plane. We wish to draw lines, none passing through $P$, in such a way that any ray starting from $P$ intersects at least $k$ of these lines. Determine the smallest number of lines needed.

2019 Balkan MO Shortlist, G3

Let $ABC$ be a scalene and acute triangle with circumcenter $O$. Let $\omega$ be the circle with center $A$, tangent to $BC$ at $D$. Suppose there are two points $F$ and $G$ on $\omega$ such that $FG \perp AO$, $\angle BFD = \angle DGC$ and the couples of points $(B,F)$ and $(C,G)$ are in different halfplanes with respect to the line $AD$. Show that the tangents to $\omega$ at $F$ and $G$ meet on the circumcircle of $ABC$.