This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2004 Greece Junior Math Olympiad, 2

Let $ABCD$ be a rectangle. Let $K,L$ be the midpoints of $BC, AD$ respectively. From point $B$ the perpendicular line on $AK$, intersects $AK$ at point $E$ and $CL$ at point $Z$. a) Prove that the quadrilateral $AKZL$ is an isosceles trapezoid b) Prove that $2S_{ABKZ}=S_{ABCD}$ c) If quadrilateral $ABCD$ is a square of side $a$, calculate the area of the isosceles trapezoid $AKZL$ in terms of side $BC=a$

1978 Yugoslav Team Selection Test, Problem 2

Let $k_0$ be a unit semi-circle with diameter $AB$. Assume that $k_1$ is a circle of radius $r_1=\frac12$ that is tangent to both $k_0$ and $AB$. The circle $k_{n+1}$ of radius $r_{n+1}$ touches $k_n,k_0$, and $AB$. Prove that: (a) For each $n\in\{2,3,\ldots\}$ it holds that $\frac1{r_{n+1}}+\frac1{r_{n-1}}=\frac6{r_n}-4$. (b) $\frac1{r_n}$ is either a square of an even integer, or twice a square of an odd integer.

1968 All Soviet Union Mathematical Olympiad, 096

Tags: geometry
The circumference with the radius $100$ cm is drawn on the cross-lined paper with the side of the squares $1$ cm. It neither comes through the vertices of the squares, nor touches the lines. How many squares can it pass through?

1991 Putnam, A4

Tags: geometry
Can we find an (infinite) sequence of disks in the Euclidean plane such that: $(1)$ their centers have no (finite) limit point in the plane; $(2)$ the total area of the disks is finite; and $(3)$ every line in the plane intersects at least one of the disks?

2011 Kazakhstan National Olympiad, 1

Inscribed in a triangle $ABC$ with the center of the circle $I$ touch the sides $AB$ and $AC$ at points $C_{1}$ and $B_{1}$, respectively. The point $M$ divides the segment $C_{1}B_{1}$ in a 3:1 ratio, measured from $C_{1}$. $N$ - the midpoint of $AC$. Prove that the points $I, M, B_{1}, N$ lie on a circle, if you know that $AC = 3 (BC-AB)$.

1967 AMC 12/AHSME, 9

Let $K$, in square units, be the area of a trapezoid such that the shorter base, the altitude, and the longer base, in that order, are in arithmetic progression. Then: $\textbf{(A)}\ K \; \text{must be an integer} \qquad \textbf{(B)}\ K \; \text{must be a rational fraction} \\ \textbf{(C)}\ K \; \text{must be an irrational number} \qquad \textbf{(D)}\ K\; \text{must be an integer or a rational fraction} \qquad$ $\textbf{(E)}\ \text{taken alone neither} \; \textbf{(A)} \; \text{nor} \; \textbf{(B)} \; \text{nor} \; \textbf{(C)} \; \text{nor} \; \textbf{(D)} \; \text{is true}$

1997 Romania National Olympiad, 4

Let $S$ be a point outside of the plane of the parallelogram $ABCD$, such that the triangles $SAB$, $SBC$, $SCD$ and $SAD$ are equivalent. a) Prove that $ABCD$ is a rhombus. b) If the distance from $S$ to the plane $(A, B, C, D)$ is $12$, $BD = 30$ and $AC = 40$, compute the distance from the projection of the point $S$ on the plane $(A, B, C, D)$ to the plane $(S,B,C)$ .

2007 Mongolian Mathematical Olympiad, Problem 2

Tags: geometry
Given $101$ segments in a line, prove that there exists $11$ segments meeting in $1$ point or $11$ segments such that every two of them are disjoint.

2014 India Regional Mathematical Olympiad, 1

In an acute-angled triangle $ABC, \angle ABC$ is the largest angle. The perpendicular bisectors of $BC$ and $BA$ intersect AC at $X$ and $Y$ respectively. Prove that circumcentre of triangle $ABC$ is incentre of triangle $BXY$ .

2013 AMC 10, 7

Tags: geometry
Six points are equally spaced around a circle of radius 1. Three of these points are the vertices of a triangle that is neither equilateral nor isosceles. What is the area of this triangle? $ \textbf{(A) }\frac{\sqrt3}3\qquad\textbf{(B) }\frac{\sqrt3}2\qquad\textbf{(C) }1\qquad\textbf{(D) }\sqrt2\qquad\textbf{(E) }2$

1977 Bulgaria National Olympiad, Problem 2

In the space are given $n$ points and no four of them belongs to a common plane. Some of the points are connected with segments. It is known that four of the given points are vertices of tetrahedron which edges belong to the segments given. It is also known that common number of the segments, passing through vertices of tetrahedron is $2n$. Prove that there exists at least two tetrahedrons every one of which have a common face with the first (initial) tetrahedron. [i]N. Nenov, N. Hadzhiivanov[/i]

1973 Chisinau City MO, 65

A finite number of chords is drawn in a circle $1$ cm in diameter so that any diameter of the circle intersects at most $N$ of these chords. Prove that the sum of the lengths of all chords is less than $3.15 \cdot N$ cm.

2012 Bundeswettbewerb Mathematik, 3

An equilateral triangle $DCE$ is placed outside a square $ABCD$. The center of this triangle is denoted as $M$ and the intersection of the straight line $AC$ and $BE$ with $S$. Prove that the triangle $CMS$ is isosceles.

KoMaL A Problems 2019/2020, A. 775

Tags: geometry
Let $H\subseteq\mathbb{R}^3$ such that if we reflect any point in $H$ across another point of $H$, the resulting point is also in $H$. Prove that either $H$ is dense in ${R}^3$ or one can find equidistant parallel planes which cover $H$

2020 BMT Fall, 7

Tags: geometry
A square has coordinates at $(0, 0)$, $(4, 0)$, $(0, 4)$, and $(4, 4)$. Rohith is interested in circles of radius $ r$ centered at the point $(1, 2)$. There is a range of radii $a < r < b$ where Rohith’s circle intersects the square at exactly $6$ points, where $a$ and $b$ are positive real numbers. Then $b - a$ can be written in the form $m +\sqrt{n}$, where $m$ and $n$ are integers. Compute $m + n$.

1991 Arnold's Trivium, 100

Find the mathematical expectation of the area of the projection of a cube with edge of length $1$ onto a plane with an isotropically distributed random direction of projection.

1996 Rioplatense Mathematical Olympiad, Level 3, 5

There is a board with $n$ rows and $4$ columns, and white, yellow and light blue chips. Player $A$ places four tokens on the first row of the board and covers them so Player $B$ doesn't know them. How should player $B$ do to fill the minimum number of rows with chips that will ensure that in any of the rows he will have at least three hits? Clarification: A hit by player $B$ occurs when he places a token of the same color and in the same column as $A$.

2015 Saudi Arabia BMO TST, 3

Let $ABC$ be a triangle, $\Gamma$ its circumcircle, $I$ its incenter, and $\omega$ a tangent circle to the line $AI$ at $I$ and to the side $BC$. Prove that the circles $\Gamma$ and $\omega$ are tangent. Malik Talbi

2005 Junior Tuymaada Olympiad, 2

Points $ X $ and $ Y $ are the midpoints of the sides $ AB $ and $ AC $ of the triangle $ ABC $, $ I $ is the center of its inscribed circle, $ K $ is the point of tangency of the inscribed circles with side $ BC $. The external angle bisector at the vertex $ B $ intersects the line $ XY $ at the point $ P $, and the external angle bisector at the vertex of $ C $ intersects $ XY $ at $ Q $. Prove that the area of the quadrilateral $ PKQI $ is equal to half the area of the triangle $ ABC $.

2020 Sharygin Geometry Olympiad, 21

Tags: geometry
The diagonals of bicentric quadrilateral $ABCD$ meet at point $L$. Given are three segments equal to $AL$, $BL$, $CL$. Restore the quadrilateral using a compass and a ruler.

2023 Germany Team Selection Test, 3

Two triangles $ABC, A’B’C’$ have the same orthocenter $H$ and the same circumcircle with center $O$. Letting $PQR$ be the triangle formed by $AA’, BB’, CC’$, prove that the circumcenter of $PQR$ lies on $OH$.

1986 China Team Selection Test, 2

Given a tetrahedron $ABCD$, $E$, $F$, $G$, are on the respectively on the segments $AB$, $AC$ and $AD$. Prove that: i) area $EFG \leq$ max{area $ABC$,area $ABD$,area $ACD$,area $BCD$}. ii) The same as above replacing "area" for "perimeter".

2002 IberoAmerican, 2

Given any set of $9$ points in the plane such that there is no $3$ of them collinear, show that for each point $P$ of the set, the number of triangles with its vertices on the other $8$ points and that contain $P$ on its interior is even.

1996 Taiwan National Olympiad, 3

Let be given points $A,B$ on a circle and let $P$ be a variable point on that circle. Let point $M$ be determined by $P$ as the point that is either on segment $PA$ with $AM=MP+PB$ or on segment $PB$ with $AP+MP=PB$. Find the locus of points $M$.

2004 Germany Team Selection Test, 3

Let $ABC$ be an isosceles triangle with $AC=BC$, whose incentre is $I$. Let $P$ be a point on the circumcircle of the triangle $AIB$ lying inside the triangle $ABC$. The lines through $P$ parallel to $CA$ and $CB$ meet $AB$ at $D$ and $E$, respectively. The line through $P$ parallel to $AB$ meets $CA$ and $CB$ at $F$ and $G$, respectively. Prove that the lines $DF$ and $EG$ intersect on the circumcircle of the triangle $ABC$. [i]Proposed by Hojoo Lee, Korea[/i]