This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2019 Purple Comet Problems, 29

Tags: geometry
In a right circular cone, $A$ is the vertex, $B$ is the center of the base, and $C$ is a point on the circumference of the base with $BC = 1$ and $AB = 4$. There is a trapezoid $ABCD$ with $\overline{AB} \parallel \overline{CD}$. A right circular cylinder whose surface contains the points $A, C$, and $D$ intersects the cone such that its axis of symmetry is perpendicular to the plane of the trapezoid, and $\overline{CD}$ is a diameter of the cylinder. A sphere radius $r$ lies inside the cone and inside the cylinder. The greatest possible value of $r$ is $\frac{a\sqrt{b}-c}{d}$ , where $a, b, c$, and $d$ are positive integers, $a$ and $d$ are relatively prime, and $b$ is not divisible by the square of any prime. Find $a + b + c + d$.

IV Soros Olympiad 1997 - 98 (Russia), 11.5

Let $M$ be the point of intersection of the diagonals of the inscribed quadrilateral $ABCD$, and let the angle $\angle AMB$ be an acute angle. On the side $BC$, as a base, an isosceles triangle $BCK$ is constructed in the direction external to the quadrilateral such that $\angle KBC+\angle AMB= 90^o$. Prove that line $KM$ is perpendicular to $AD$.

2020 Polish Junior MO Second Round, 2.

Let $ABCD$ be the parallelogram, such that angle at vertex $A$ is acute. Perpendicular bisector of the segment $AB$ intersects the segment $CD$ in the point $X$. Let $E$ be the intersection point of the diagonals of the parallelogram $ABCD$. Prove that $XE = \frac{1}{2}AD$.

2005 Germany Team Selection Test, 2

Let $M$ be a set of points in the Cartesian plane, and let $\left(S\right)$ be a set of segments (whose endpoints not necessarily have to belong to $M$) such that one can walk from any point of $M$ to any other point of $M$ by travelling along segments which are in $\left(S\right)$. Find the smallest total length of the segments of $\left(S\right)$ in the cases [b]a.)[/b] $M = \left\{\left(-1,0\right),\left(0,0\right),\left(1,0\right),\left(0,-1\right),\left(0,1\right)\right\}$. [b]b.)[/b] $M = \left\{\left(-1,-1\right),\left(-1,0\right),\left(-1,1\right),\left(0,-1\right),\left(0,0\right),\left(0,1\right),\left(1,-1\right),\left(1,0\right),\left(1,1\right)\right\}$. In other words, find the Steiner trees of the set $M$ in the above two cases.

2015 Thailand TSTST, 1

Let $O$ be the circumcenter of an acute $\vartriangle ABC$ which has altitude $AD$. Let $AO$ intersect the circumcircle of $\vartriangle BOC$ again at $X$. If $E$ and $F$ are points on lines $AB$ and $AC$ such that $\angle XEA = \angle XFA = 90^o$ , then prove that the line $DX$ bisects the segment $EF$.

2024 ELMO Shortlist, G7

Let $ABC$ be a triangle. Construct rectangles $BA_1A_2C$, $CB_1B_2A$, and $AC_1C_2B$ outside $ABC$ such that $\angle BCA_1=\angle CAB_1=\angle ABC_1$. Let $A_1B_2$ and $A_2C_1$ intersect at $A'$ and define $B',C'$ similarly. Prove that line $AA'$ bisects $B'C'$. [i]Linus Tang[/i]

2011 Saint Petersburg Mathematical Olympiad, 3

Tags: geometry
Point $D$ is inside $\triangle ABC$ and $AD=DC$. $BD$ intersect $AC$ in $E$. $\frac{BD}{BE}=\frac{AE}{EC}$. Prove, that $BE=BC$

1987 Greece Junior Math Olympiad, 1

We color all the points of the plane with two colors. Prove that there are (at least) two points of the plane having the same color and at distance $1$ among them.

2004 Dutch Mathematical Olympiad, 2

Two circles $A$ and $B$, both with radius $1$, touch each other externally. Four circles $P, Q, R$ and $S$, all four with the same radius $r$, lie such that $P$ externally touches on $A, B, Q$ and $S$, $Q$ externally touches on $P, B$ and $R$, $R$ externally touches on $A, B, Q$ and $S$, $S$ externally touches on $P, A$ and $R$. Calculate the length of $r.$ [asy] unitsize(0.3 cm); pair A, B, P, Q, R, S; real r = (3 + sqrt(17))/2; A = (-1,0); B = (1,0); P = intersectionpoint(arc(A,r + 1,0,180), arc(B,r + 1,0,180)); R = -P; Q = (r + 2,0); S = (-r - 2,0); draw(Circle(A,1)); draw(Circle(B,1)); draw(Circle(P,r)); draw(Circle(Q,r)); draw(Circle(R,r)); draw(Circle(S,r)); label("$A$", A); label("$B$", B); label("$P$", P); label("$Q$", Q); label("$R$", R); label("$S$", S); [/asy]

MOAA Team Rounds, 2018.3

Tags: geometry , team
Let $BE$ and $CF$ be altitudes in triangle $ABC$. If $AE = 24$, $EC = 60$, and $BF = 31$, determine $AF$.

1991 Arnold's Trivium, 70

Calculate the mean value of the solid angle by which the disc $x^2 + y^2 \le 1$ lying in the plane $z = 0$ is seen from points of the sphere $x^2 + y^2 + (z-2)^2 = 1$.

Kyiv City MO Juniors 2003+ geometry, 2004.8.7

In an isosceles triangle $ABC$ with base $AC$, on side $BC$ is selected point $K$ so that $\angle BAK = 24^o$. On the segment $AK$ the point $M$ is chosen so that $\angle ABM = 90^o$, $AM=2BK$. Find the values ​​of all angles of triangle $ABC$.

2010 CHMMC Fall, Individual

[b]p1.[/b] Susan plays a game in which she rolls two fair standard six-sided dice with sides labeled one through six. She wins if the number on one of the dice is three times the number on the other die. If Susan plays this game three times, compute the probability that she wins at least once. [b]p2.[/b] In triangles $\vartriangle ABC$ and $\vartriangle DEF$, $DE = 4AB$, $EF = 4BC$, and $FD = 4CA$. The area of $\vartriangle DEF$ is $360$ units more than the area of $\vartriangle ABC$. Compute the area of $\vartriangle ABC$. [b]p3.[/b] Andy has $2010$ square tiles, each of which has a side length of one unit. He plans to arrange the tiles in an $m\times n$ rectangle, where $mn = 2010$. Compute the sum of the perimeters of all of the different possible rectangles he can make. Two rectangles are considered to be the same if one can be rotated to become the other, so, for instance, a $1\times 2010$ rectangle is considered to be the same as a $2010\times 1$ rectangle. [b]p4.[/b] Let $$S = \log_2 9 \log_3 16 \log_4 25 ... \log_{999} 1000000.$$ Compute the greatest integer less than or equal to $\log_2 S$. [b]p5.[/b] Let $A$ and $B$ be fixed points in the plane with distance $AB = 1$. An ant walks on a straight line from point $A$ to some point $C$ in the plane and notices that the distance from itself to B always decreases at any time during this walk. Compute the area of the region in the plane containing all points where point $C$ could possibly be located. [b]p6.[/b] Lisette notices that $2^{10} = 1024$ and $2^{20} = 1 048 576$. Based on these facts, she claims that every number of the form $2^{10k}$ begins with the digit $1$, where k is a positive integer. Compute the smallest $k$ such that Lisette's claim is false. You may or may not find it helpful to know that $ln 2 \approx 0.69314718$, $ln 5 \approx 1.60943791$, and $log_{10} 2 \approx 0:30103000$. [b]p7.[/b] Let $S$ be the set of all positive integers relatively prime to $6$. Find the value of $\sum_{k\in S}\frac{1}{2^k}$ . [b]p8.[/b] Euclid's algorithm is a way of computing the greatest common divisor of two positive integers $a$ and $b$ with $a > b$. The algorithm works by writing a sequence of pairs of integers as follows. 1. Write down $(a, b)$. 2. Look at the last pair of integers you wrote down, and call it $(c, d)$. $\bullet$ If $d \ne 0$, let r be the remainder when c is divided by d. Write down $(d, r)$. $\bullet$ If $d = 0$, then write down c. Once this happens, you're done, and the number you just wrote down is the greatest common divisor of a and b. 3. Repeat step 2 until you're done. For example, with $a = 7$ and $b = 4$, Euclid's algorithm computes the greatest common divisor in $4$ steps: $$(7, 4) \to (4, 3) \to (3, 1) \to (1, 0) \to 1$$ For $a > b > 0,$ compute the least value of a such that Euclid's algorithm takes $10$ steps to compute the greatest common divisor of $a$ and $b$. [b]p9.[/b] Let $ABCD$ be a square of unit side length. Inscribe a circle $C_0$ tangent to all of the sides of the square. For each positive integer $n$, draw a circle Cn that is externally tangent to $C_{n-1}$ and also tangent to sides $AB$ and $AD$. Suppose $r_i$ is the radius of circle $C_i$ for every nonnegative integer $i$. Compute $\sqrt[200]{r_0/r_{100}}$. [b]p10.[/b] Rachel and Mike are playing a game. They start at $0$ on the number line. At each positive integer on the number line, there is a carrot. At the beginning of the game, Mike picks a positive integer $n$ other than $30$. Every minute, Rachel moves to the next multiple of $30$ on the number line that has a carrot on it and eats that carrot. At the same time, every minute, Mike moves to the next multiple of $n$ on the number line that has a carrot on it and eats that carrot. Mike wants to pick an $n$ such that, as the game goes on, he is always within $1000$ units of Rachel. Compute the average (arithmetic mean) of all such $n$. [b]p11.[/b] Darryl has a six-sided die with faces $1, 2, 3, 4, 5, 6$. He knows the die is weighted so that one face comes up with probability $1/2$ and the other five faces have equal probability of coming up. He unfortunately does not know which side is weighted, but he knows each face is equally likely to be the weighted one. He rolls the die 5 times and gets a $1$, $2$, $3$, $4$ and $5$ in some unspecified order. Compute the probability that his next roll is a $6$. [b]p12.[/b] Let $F_0 = 1$, $F_1 = 1$ and $F_k = F_{k-1} + F_{k-2}$. Let $P(x) =\sum^{99}_{k=0} x^{F_k}$ . The remainder when $P(x)$ is divided by $x^3 - 1$ can be expressed as $ax^2 + bx + c$. Find $2a + b$. [b]p13.[/b] Let $\theta \ne 0$ be the smallest acute angle for which $\sin \theta$, $\sin (2\theta)$, $\sin (3\theta)$, when sorted in increasing order, form an arithmetic progression. Compute $\cos (\theta/2)$. [b]p14.[/b] A $4$-dimensional hypercube of edge length 1 is constructed in $4$-space with its edges parallel to the coordinate axes and one vertex at the origin. The coordinates of its sixteen vertices are given by $(a, b, c, d)$, where each of $a$, $b$, $c$, and $d$ is either $0$ or $1$. The $3$-dimensional hyperplane given by $x + y + z + w = 2$ intersects the hypercube at $6$ of its vertices. Compute the $3$-dimensional volume of the solid formed by the intersection. [b]p15.[/b] A student puts $2010$ red balls and $1957$ blue balls into a box. Weiqing draws randomly from the box one ball at a time without replacement. She wins if, at anytime, the total number of blue balls drawn is more than the total number of red balls drawn. Assuming Weiqing keeps drawing balls until she either wins or runs out, ompute the probability that she eventually wins. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

MMATHS Mathathon Rounds, Sample

[b]p1.[/b] What is the largest distance between any two points on a regular hexagon with a side length of one? [b]p2.[/b] For how many integers $n \ge 1$ is $\frac{10^n - 1}{9}$ the square of an integer? [b]p3.[/b] A vector in $3D$ space that in standard position in the first octant makes an angle of $\frac{\pi}{3}$ with the $x$ axis and $\frac{\pi}{4}$ with the $y$ axis. What angle does it make with the $z$ axis? [b]p4.[/b] Compute $\sqrt{2012^2 + 2012^2 \cdot 2013^2 + 2013^2} - 2012^2$. [b]p5.[/b] Round $\log_2 \left(\sum^{32}_{k=0} {{32} \choose k} \cdot 3^k \cdot 5^k\right)$ to the nearest integer. [b]p6.[/b] Let $P$ be a point inside a ball. Consider three mutually perpendicular planes through $P$. These planes intersect the ball along three disks. If the radius of the ball is $2$ and $1/2$ is the distance between the center of the ball and $P$, compute the sum of the areas of the three disks of intersection. [b]p7.[/b] Find the sum of the absolute values of the real roots of the equation $x^4 - 4x - 1 = 0$. [b]p8.[/b] The numbers $1, 2, 3, ..., 2013$ are written on a board. A student erases three numbers $a, b, c$ and instead writes the number $$\frac12 (a + b + c)\left((a - b)^2 + (b - c)^2 + (c - a)^2\right).$$ She repeats this process until there is only one number left on the board. List all possible values of the remainder when the last number is divided by 3. [b]p9.[/b] How many ordered triples of integers $(a, b, c)$, where $1 \le a, b, c \le 10$, are such that for every natural number $n$, the equation $(a + n)x^2 + (b + 2n)x + c + n = 0$ has at least one real root? Problems' source (as mentioned on official site) is Gator Mathematics Competition. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 All-Russian Olympiad Regional Round, 9.8

Straight rod of 2 meter length is cut into $N$ sticks. The length of each piece is an integer number of centimeters. For which smallest $N$ can one guarantee that it is possible to form the contour of some rectangle, while using all sticks and not breaking them further? (Author: A. Magazinov)

1997 Singapore Senior Math Olympiad, 2

Figure shows a semicircle with diameter $AD$. The chords $AC$ and $BD$ meet at $P$. $Q$ is the foot of the perpendicular from $P$ to $AD$. find $\angle BCQ$ in terms of $\theta$ and $\phi$ . [img]https://cdn.artofproblemsolving.com/attachments/a/2/2781050e842b2dd01b72d246187f4ed434ff69.png[/img]

2005 International Zhautykov Olympiad, 2

Let the circle $ (I; r)$ be inscribed in the triangle $ ABC$. Let $ D$ be the point of contact of this circle with $ BC$. Let $ E$ and $ F$ be the midpoints of $ BC$ and $ AD$, respectively. Prove that the three points $ I$, $ E$, $ F$ are collinear.

1967 German National Olympiad, 4

Given a regular $n$-gon $A_{1}A_{2}...A_{n}$ (with $n\geq 3$) in a plane. How many triangles of the kind $A_{i}A_{j}A_{k}$ are obtuse ?

2013 Iran Team Selection Test, 6

Tags: geometry , function
Points $A, B, C$ and $D$ lie on line $l$ in this order. Two circular arcs $C_1$ and $C_2$, which both lie on one side of line $l$, pass through points $A$ and $B$ and two circular arcs $C_3$ and $C_4$ pass through points $C$ and $D$ such that $C_1$ is tangent to $C_3$ and $C_2$ is tangent to $C_4$. Prove that the common external tangent of $C_2$ and $C_3$ and the common external tangent of $C_1$ and $C_4$ meet each other on line $l$. [i]Proposed by Ali Khezeli[/i]

2022 Belarusian National Olympiad, 11.6

Tags: incenter , geometry
The incircle of a right-angled triangle $ABC$ touches hypotenus $AB$ at $P$, $BC$ and $AC$ at $R$ and $Q$ respectively. $C_1$ and $C_2$ are reflections of $C$ in $PQ$ and $PR$. Find the angle $C_1IC_2$, where $I$ is the incenter of $ABC$.

JBMO Geometry Collection, 2017

Tags: geometry
Let $ABC $ be an acute triangle such that $AB\neq AC$ ,with circumcircle $ \Gamma$ and circumcenter $O$. Let $M$ be the midpoint of $BC$ and $D$ be a point on $ \Gamma$ such that $AD \perp BC$. let $T$ be a point such that $BDCT$ is a parallelogram and $Q$ a point on the same side of $BC$ as $A$ such that $\angle{BQM}=\angle{BCA}$ and $\angle{CQM}=\angle{CBA}$. Let the line $AO$ intersect $ \Gamma$ at $E$ $(E\neq A)$ and let the circumcircle of $\triangle ETQ$ intersect $ \Gamma$ at point $X\neq E$. Prove that the point $A,M$ and $X$ are collinear.

Novosibirsk Oral Geo Oly VIII, 2019.4

Given a triangle $ABC$, in which the angle $B$ is three times the angle $C$. On the side $AC$, point $D$ is chosen such that the angle $BDC$ is twice the angle $C$. Prove that $BD + BA = AC$.

2021 Iran MO (2nd Round), 1

There are two distinct Points $A$ and $B$ on a line. We color a point $P$ on segment $AB$, distinct from $A,B$ and midpoint of segment $AB$ to red. In each move , we can reflect one of the red point wrt $A$ or $B$ and color the midpoint of the resulting point and the point we reflected from ( which is one of $A$ or $B$ ) to red. For example , if we choose $P$ and the reflection of $P$ wrt to $A$ is $P'$ , then midpoint of $AP'$ would be red. Is it possible to make the midpoint of $AB$ red after a finite number of moves?

1970 Poland - Second Round, 2

On the sides of the regular $ n $-gon, $ n + 1 $ points are taken dividing the perimeter into equal parts. At what position of the selected points is the area of the convex polygon with these $ n + 1 $ vertices a) the largest, b) the smallest?

2006 Bulgaria National Olympiad, 2

The triangle $ABC$ is such that $\angle BAC=30^{\circ},\angle ABC=45^{\circ}$. Prove that if $X$ lies on the ray $AC$, $Y$ lies on the ray $BC$ and $OX=BY$, where $O$ is the circumcentre of triangle $ABC$, then $S_{XY}$ passes through a fixed point. [i]Emil Kolev [/i]