This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 222

2010 National Olympiad First Round, 11

At most how many points with integer coordinates are there over a circle with center of $(\sqrt{20}, \sqrt{10})$ in the $xy$-plane? $ \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ \text{None} $

1999 AIME Problems, 2

Consider the parallelogram with vertices $(10,45),$ $(10,114),$ $(28,153),$ and $(28,84).$ A line through the origin cuts this figure into two congruent polygons. The slope of the line is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

1985 Balkan MO, 1

In a given triangle $ABC$, $O$ is its circumcenter, $D$ is the midpoint of $AB$ and $E$ is the centroid of the triangle $ACD$. Show that the lines $CD$ and $OE$ are perpendicular if and only if $AB=AC$.

1988 National High School Mathematics League, 3

On the coordinate plane, is there a line family of infinitely many lines $l_1,l_2,\cdots,l_n,\cdots$, satisfying the following? (1) Point$(1,1)\in l_n$ for all $n\in \mathbb{Z}_{+}$. (2) For all $n\in \mathbb{Z}_{+}$,$k_{n+1}=a_n-b_n$, where $k_{n+1}$ is the slope of $l_{n+1}$, $a_n,b_n$ are intercepts of $l_n$ on $x$-axis, $y$-axis. (3) $k_nk_{n+1}\geq0$ for all $n\in \mathbb{Z}_{+}$.

2011 AIME Problems, 3

Let $L$ be the line with slope $\tfrac{5}{12}$ that contains the point $A=(24,-1)$, and let $M$ be the line perpendicular to line $L$ that contains the point $B=(5,6)$. The original coordinate axes are erased, and line $L$ is made the $x$-axis, and line $M$ the $y$-axis. In the new coordinate system, point $A$ is on the positive $x$-axis, and point $B$ is on the positive $y$-axis. The point $P$ with coordinates $(-14,27)$ in the original system has coordinates $(\alpha,\beta)$ in the new coordinate system. Find $\alpha+\beta$.

2007 Iran Team Selection Test, 3

Let $P$ be a point in a square whose side are mirror. A ray of light comes from $P$ and with slope $\alpha$. We know that this ray of light never arrives to a vertex. We make an infinite sequence of $0,1$. After each contact of light ray with a horizontal side, we put $0$, and after each contact with a vertical side, we put $1$. For each $n\geq 1$, let $B_{n}$ be set of all blocks of length $n$, in this sequence. a) Prove that $B_{n}$ does not depend on location of $P$. b) Prove that if $\frac{\alpha}{\pi}$ is irrational, then $|B_{n}|=n+1$.

2011 Tokio University Entry Examination, 4

Take a point $P\left(\frac 12,\ \frac 14\right)$ on the coordinate plane. Let two points $Q(\alpha ,\ \alpha ^ 2),\ R(\beta ,\ \beta ^2)$ move in such a way that 3 points $P,\ Q,\ R$ form an isosceles triangle with the base $QR$, find the locus of the barycenter $G(X,\ Y)$ of $\triangle{PQR}$. [i]2011 Tokyo University entrance exam[/i]

1991 Arnold's Trivium, 1

Sketch the graph of the derivative and the graph of the integral of a function given by a free-hand graph.

2011 China Team Selection Test, 3

Let $m$ and $n$ be positive integers. A sequence of points $(A_0,A_1,\ldots,A_n)$ on the Cartesian plane is called [i]interesting[/i] if $A_i$ are all lattice points, the slopes of $OA_0,OA_1,\cdots,OA_n$ are strictly increasing ($O$ is the origin) and the area of triangle $OA_iA_{i+1}$ is equal to $\frac{1}{2}$ for $i=0,1,\ldots,n-1$. Let $(B_0,B_1,\cdots,B_n)$ be a sequence of points. We may insert a point $B$ between $B_i$ and $B_{i+1}$ if $\overrightarrow{OB}=\overrightarrow{OB_i}+\overrightarrow{OB_{i+1}}$, and the resulting sequence $(B_0,B_1,\ldots,B_i,B,B_{i+1},\ldots,B_n)$ is called an [i]extension[/i] of the original sequence. Given two [i]interesting[/i] sequences $(C_0,C_1,\ldots,C_n)$ and $(D_0,D_1,\ldots,D_m)$, prove that if $C_0=D_0$ and $C_n=D_m$, then we may perform finitely many [i]extensions[/i] on each sequence until the resulting two sequences become identical.

1992 Brazil National Olympiad, 1

The equation $x^3+px+q=0$ has three distinct real roots. Show that $p<0$

2006 Swedish Mathematical Competition, 3

A cubic polynomial $f$ with a positive leading coefficient has three different positive zeros. Show that $f'(a)+ f'(b)+ f'(c) > 0$.

1961 AMC 12/AHSME, 3

If the graphs of $2y+x+3=0$ and $3y+ax+2=0$ are to meet at right angles, the value of $a$ is: ${{ \textbf{(A)}\ \pm \frac{2}{3} \qquad\textbf{(B)}\ -\frac{2}{3}\qquad\textbf{(C)}\ -\frac{3}{2} \qquad\textbf{(D)}\ 6}\qquad\textbf{(E)}\ -6} $

2011 AIME Problems, 13

A cube with side length 10 is suspended above a plane. The vertex closest to the plane is labelled $A$. The three vertices adjacent to vertex $A$ are at heights 10, 11, and 12 above the plane. The distance from vertex $A$ to the plane can be expressed as $\tfrac{r-\sqrt{s}}{t}$, where $r$, $s$, and $t$ are positive integers, and $r+s+t<1000$. Find $r+s+t$.

2013 Harvard-MIT Mathematics Tournament, 6

Find the number of integers $n$ such that \[1+\left\lfloor\dfrac{100n}{101}\right\rfloor=\left\lceil\dfrac{99n}{100}\right\rceil.\]

1997 AIME Problems, 7

A car travels due east at $\frac 23$ mile per minute on a long, straight road. At the same time, a circular storm, whose radius is 51 miles, moves southeast at $\frac 12\sqrt{2}$ mile per minute. At time $t=0,$ the center of the storm is 110 miles due north of the car. At time $t=t_1$ minutes, the car enters the storm circle, and at time $t=t_2$ minutes, the car leaves the storm circle. Find $\frac 12(t_1+t_2).$

1998 AMC 12/AHSME, 14

A parabola has vertex at $(4,-5)$ and has two $x$-intercepts, one positive and one negative. If this parabola is the graph of $y = ax^2 + bx + c$, which of $a$, $b$, and $c$ must be positive? $ \textbf{(A)}\ \text{Only }a\qquad \textbf{(B)}\ \text{Only }b\qquad \textbf{(C)}\ \text{Only }c\qquad \textbf{(D)}\ \text{Only }a\text{ and }b\qquad \textbf{(E)}\ \text{None}$

2011 District Olympiad, 4

Find all the functions $f:[0,1]\rightarrow \mathbb{R}$ for which we have: \[|x-y|^2\le |f(x)-f(y)|\le |x-y|,\] for all $x,y\in [0,1]$.

2014 AIME Problems, 7

Let $w$ and $z$ be complex numbers such that $|w| = 1$ and $|z| = 10$. Let $\theta = \arg\left(\tfrac{w-z}{z}\right)$. The maximum possible value of $\tan^2 \theta$ can be written as $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$. (Note that $\arg(w)$, for $w \neq 0$, denotes the measure of the angle that the ray from $0$ to $w$ makes with the positive real axis in the complex plane.

2009 Today's Calculation Of Integral, 423

Let $ f(x)\equal{}x^2\plus{}3$ and $ y\equal{}g(x)$ be the equation of the line with the slope $ a$, which pass through the point $ (0,\ f(0))$ . Find the maximum and minimum values of $ I(a)\equal{}3\int_{\minus{}1}^1 |f(x)\minus{}g(x)|\ dx$.

2006 AIME Problems, 9

Circles $\mathcal{C}_1$, $\mathcal{C}_2$, and $\mathcal{C}_3$ have their centers at (0,0), (12,0), and (24,0), and have radii 1, 2, and 4, respectively. Line $t_1$ is a common internal tangent to $\mathcal{C}_1$ and $\mathcal{C}_2$ and has a positive slope, and line $t_2$ is a common internal tangent to $\mathcal{C}_2$ and $\mathcal{C}_3$ and has a negative slope. Given that lines $t_1$ and $t_2$ intersect at $(x,y)$, and that $x=p-q\sqrt{r}$, where $p$, $q$, and $r$ are positive integers and $r$ is not divisible by the square of any prime, find $p+q+r$.

Today's calculation of integrals, 873

Let $a,\ b$ be positive real numbers. Consider the circle $C_1: (x-a)^2+y^2=a^2$ and the ellipse $C_2: x^2+\frac{y^2}{b^2}=1.$ (1) Find the condition for which $C_1$ is inscribed in $C_2$. (2) Suppose $b=\frac{1}{\sqrt{3}}$ and $C_1$ is inscribed in $C_2$. Find the coordinate $(p,\ q)$ of the point of tangency in the first quadrant for $C_1$ and $C_2$. (3) Under the condition in (1), find the area of the part enclosed by $C_1,\ C_2$ for $x\geq p$. 60 point

2008 Harvard-MIT Mathematics Tournament, 21

Let $ ABC$ be a triangle with $ AB \equal{} 5$, $ BC \equal{} 4$ and $ AC \equal{} 3$. Let $ \mathcal P$ and $ \mathcal Q$ be squares inside $ ABC$ with disjoint interiors such that they both have one side lying on $ AB$. Also, the two squares each have an edge lying on a common line perpendicular to $ AB$, and $ \mathcal P$ has one vertex on $ AC$ and $ \mathcal Q$ has one vertex on $ BC$. Determine the minimum value of the sum of the areas of the two squares. [asy]import olympiad; import math; import graph; unitsize(1.5cm); pair A, B, C; A = origin; B = A + 5 * right; C = (9/5, 12/5); pair X = .7 * A + .3 * B; pair Xa = X + dir(135); pair Xb = X + dir(45); pair Ya = extension(X, Xa, A, C); pair Yb = extension(X, Xb, B, C); pair Oa = (X + Ya)/2; pair Ob = (X + Yb)/2; pair Ya1 = (X.x, Ya.y); pair Ya2 = (Ya.x, X.y); pair Yb1 = (Yb.x, X.y); pair Yb2 = (X.x, Yb.y); draw(A--B--C--cycle); draw(Ya--Ya1--X--Ya2--cycle); draw(Yb--Yb1--X--Yb2--cycle); label("$A$", A, W); label("$B$", B, E); label("$C$", C, N); label("$\mathcal P$", Oa, origin); label("$\mathcal Q$", Ob, origin);[/asy]

2022 BmMT, Team Round

[b]p1.[/b] If $x^2 = 7$, what is $x^4 + x^2 + 1$? [b]p2.[/b] Richard and Alex are competing in a $150$-meter race. If Richard runs at a constant speed of $5$ meters per second and Alex runs at a constant speed of $3$ meters per second, how many more seconds does it take for Alex to finish the race? [b]p3.[/b] David and Emma are playing a game with a chest of $100$ gold coins. They alternate turns, taking one gold coin if the chest has an odd number of gold coins or taking exactly half of the gold coins if the chest has an even number of gold coins. The game ends when there are no more gold coins in the chest. If Emma goes first, how many gold coins does Emma have at the end? [b]p4.[/b] What is the only $3$-digit perfect square whose digits are all different and whose units digit is $5$? [b]p5.[/b] In regular pentagon $ABCDE$, let $F$ be the midpoint of $\overline{AB}$, $G$ be the midpoint of $\overline{CD}$, and $H$ be the midpoint of $\overline{AE}$. What is the measure of $\angle FGH$ in degrees? [b]p6.[/b] Water enters at the left end of a pipe at a rate of $1$ liter per $35$ seconds. Some of the water exits the pipe through a leak in the middle. The rest of the water exits from the right end of the pipe at a rate of $1$ liter per $36$ seconds. How many minutes does it take for the pipe to leak a liter of water? [b]p7.[/b] Carson wants to create a wire frame model of a right rectangular prism with a volume of $2022$ cubic centimeters, where strands of wire form the edges of the prism. He wants to use as much wire as possible. If Carson also wants the length, width, and height in centimeters to be distinct whole numbers, how many centimeters of wire does he need to create the prism? [b]p8.[/b] How many ways are there to fill the unit squares of a $3 \times 5$ grid with the digits $1$, $2$, and $3$ such that every pair of squares that share a side differ by exactly $1$? [b]p9.[/b] In pentagon ABCDE, $AB = 54$, $AE = 45$, $DE = 18$, $\angle A = \angle C = \angle E$, $D$ is on line segment $\overline{BE}$, and line $BD$ bisects angle $\angle ABC$, as shown in the diagram below. What is the perimeter of pentagon $ABCDE$? [img]https://cdn.artofproblemsolving.com/attachments/2/0/7c25837bb10b128a1c7a292f6ce8ce3e64b292.png[/img] [b]p10.[/b] If $x$ and $y$ are nonzero real numbers such that $\frac{7}{x} + \frac{8}{y} = 91$ and $\frac{6}{x} + \frac{10}{y} = 89$, what is the value of $x + y$? [b]p11.[/b] Hilda and Marianne play a game with a shued deck of $10$ cards, numbered from $1$ to $10$. Hilda draws five cards, and Marianne picks up the five remaining cards. Hilda observes that she does not have any pair of consecutive cards - that is, no two cards have numbers that differ by exactly $1$. Additionally, the sum of the numbers on Hilda's cards is $1$ less than the sum of the numbers on Marianne's cards. Marianne has exactly one pair of consecutive cards - what is the sum of this pair? [b]p12.[/b] Regular hexagon $AUSTIN$ has side length $2$. Let $M$ be the midpoint of line segment $\overline{ST}$. What is the area of pentagon $MINUS$? [b]p13.[/b] At a collector's store, plushes are either small or large and cost a positive integer number of dollars. All small plushes cost the same price, and all large plushes cost the same price. Two small plushes cost exactly one dollar less than a large plush. During a shopping trip, Isaac buys some plushes from the store for 59 dollars. What is the smallest number of dollars that the small plush could not possibly cost? [b]p14.[/b] Four fair six-sided dice are rolled. What is the probability that the median of the four outcomes is $5$? [b]p15.[/b] Suppose $x_1, x_2,..., x_{2022}$ is a sequence of real numbers such that: $x_1 + x_2 = 1$ $x_2 + x_3 = 2$ $...$ $x_{2021} + x_{2022} = 2021$ If $x_1 + x_{499} + x_{999} + x_{1501} = 222$, then what is the value of $x_{2022}$? [b]p16.[/b] A cone has radius $3$ and height $4$. An infinite number of spheres are placed in the cone in the following way: sphere $C_0$ is placed inside the cone such that it is tangent to the base of the cone and to the curved surface of the cone at more than one point, and for $i \ge 1$, sphere $C_i$ is placed such that it is externally tangent to sphere $C_{i-1}$ and internally tangent to more than one point of the curved surface of the cone. If $V_i$ is the volume of sphere $C_i$, compute $V_0 + V_1 + V_2 + ... $ . [img]https://cdn.artofproblemsolving.com/attachments/b/4/b43e40bb0a5974dd9d656691c14b4ae268b5b5.png[/img] [b]p17.[/b] Call an ordered pair, $(x, y)$, relatable if $x$ and $y$ are positive integers where $y$ divides $3600$, $x$ divides $y$ and $\frac{y}{x}$ is a prime number. For every relatable ordered pair, Leanne wrote down the positive difference of the two terms of the pair. What is the sum of the numbers she wrote down? [b]p18.[/b] Let $r, s$, and $t$ be the three roots of $P(x) = x^3 - 9x - 9$. Compute the value of $(r^3 + r^2 - 10r - 8)(s^3 + s^2 - 10s - 8)(t^3 + t^2 - 10t - 8)$. [b]p19.[/b] Compute the number of ways to color the digits $0, 1, 2, 3, 4, 5, 6, 7, 8$ and $9$ red, blue, or green such that: (a) every prime integer has at least one digit that is not blue, and (b) every composite integer has at least one digit that is not green. Note that $0$ is not composite. For example, since $12$ is composite, either the digit $1$, the digit $2$, or both must be not green. [b]p20.[/b] Pentagon $ABCDE$ has $AB = DE = 4$ and $BC = CD = 9$ with $\angle ABC = \angle CDE = 90^o$, and there exists a circle tangent to all five sides of the pentagon. What is the length of segment $\overline{AE}$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1954 AMC 12/AHSME, 12

The solution of the equations \begin{align*} 2x-3y&=7 \\ 4x-6y &=20 \\ \end{align*} is: $ \textbf{(A)}\ x=18, y=12 \qquad \textbf{(B)}\ x=0, y=0 \qquad \textbf{(C)}\ \text{There is no solution} \\ \textbf{(D)}\ \text{There are an unlimited number of solutions} \qquad \textbf{(E)}\ x=8, y=5$

1988 AMC 12/AHSME, 29

You plot weight $(y)$ against height $(x)$ for three of your friends and obtain the points $(x_{1},y_{1})$, $(x_{2},y_{2})$, $(x_{3},y_{3})$. If \[x_{1} < x_{2} < x_{3}\quad\text{ and }\quad x_{3} - x_{2} = x_{2} - x_{1},\] which of the following is necessarily the slope of the line which best fits the data? "Best fits" means that the sum of the squares of the vertical distances from the data points to the line is smaller than for any other line. $ \textbf{(A)}\ \frac{y_{3} - y_{1}}{x_{3} - x_{1}}\qquad\textbf{(B)}\ \frac{(y_{2} - y_{1}) - (y_{3} - y_{2})}{x_{3} - x_{1}}\qquad\textbf{(C)}\ \frac{2y_{3} - y_{1} - y_{2}}{2x_{3} - x_{1} - x_{2}}\qquad\textbf{(D)}\ \frac{y_{2} - y_{1}}{x_{2} - x_{1}} + \frac{y_{3} - y_{2}}{x_{3} - x_{2}}\qquad\textbf{(E)}\ \text{none of these} $