This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 393

2020 Iran Team Selection Test, 4

Let $ABC$ be an isosceles triangle ($AB=AC$) with incenter $I$. Circle $\omega$ passes through $C$ and $I$ and is tangent to $AI$. $\omega$ intersects $AC$ and circumcircle of $ABC$ at $Q$ and $D$, respectively. Let $M$ be the midpoint of $AB$ and $N$ be the midpoint of $CQ$. Prove that $AD$, $MN$ and $BC$ are concurrent. [i]Proposed by Alireza Dadgarnia[/i]

2002 India IMO Training Camp, 1

Let $A,B$ and $C$ be three points on a line with $B$ between $A$ and $C$. Let $\Gamma_1,\Gamma_2, \Gamma_3$ be semicircles, all on the same side of $AC$ and with $AC,AB,BC$ as diameters, respectively. Let $l$ be the line perpendicular to $AC$ through $B$. Let $\Gamma$ be the circle which is tangent to the line $l$, tangent to $\Gamma_1$ internally, and tangent to $\Gamma_3$ externally. Let $D$ be the point of contact of $\Gamma$ and $\Gamma_3$. The diameter of $\Gamma$ through $D$ meets $l$ in $E$. Show that $AB=DE$.

2018 Romania Team Selection Tests, 1

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2014 Tuymaada Olympiad, 3

The points $K$ and $L$ on the side $BC$ of a triangle $\triangle{ABC}$ are such that $\widehat{BAK}=\widehat{CAL}=90^\circ$. Prove that the midpoint of the altitude drawn from $A$, the midpoint of $KL$ and the circumcentre of $\triangle{ABC}$ are collinear. [i](A. Akopyan, S. Boev, P. Kozhevnikov)[/i]

2006 China Team Selection Test, 1

Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.

2012 ELMO Shortlist, 4

Circles $\Omega$ and $\omega$ are internally tangent at point $C$. Chord $AB$ of $\Omega$ is tangent to $\omega$ at $E$, where $E$ is the midpoint of $AB$. Another circle, $\omega_1$ is tangent to $\Omega, \omega,$ and $AB$ at $D,Z,$ and $F$ respectively. Rays $CD$ and $AB$ meet at $P$. If $M$ is the midpoint of major arc $AB$, show that $\tan \angle ZEP = \tfrac{PE}{CM}$. [i]Ray Li.[/i]

2014 ELMO Shortlist, 1

Let $ABC$ be a triangle with symmedian point $K$. Select a point $A_1$ on line $BC$ such that the lines $AB$, $AC$, $A_1K$ and $BC$ are the sides of a cyclic quadrilateral. Define $B_1$ and $C_1$ similarly. Prove that $A_1$, $B_1$, and $C_1$ are collinear. [i]Proposed by Sammy Luo[/i]

2015 NIMO Problems, 6

Let $\triangle ABC$ be a triangle with $BC = 4, CA= 5, AB= 6$, and let $O$ be the circumcenter of $\triangle ABC$. Let $O_b$ and $O_c$ be the reflections of $O$ about lines $CA$ and $AB$ respectively. Suppose $BO_b$ and $CO_c$ intersect at $T$, and let $M$ be the midpoint of $BC$. Given that $MT^2 = \frac{p}{q}$ for some coprime positive integers $p$ and $q$, find $p+q$. [i]Proposed by Sreejato Bhattacharya[/i]

2010 Sharygin Geometry Olympiad, 2

Bisectors $AA_1$ and $BB_1$ of a right triangle $ABC \ (\angle C=90^\circ )$ meet at a point $I.$ Let $O$ be the circumcenter of triangle $CA_1B_1.$ Prove that $OI \perp AB.$

2006 China Team Selection Test, 1

$ABCD$ is a trapezoid with $AB || CD$. There are two circles $\omega_1$ and $\omega_2$ is the trapezoid such that $\omega_1$ is tangent to $DA$, $AB$, $BC$ and $\omega_2$ is tangent to $BC$, $CD$, $DA$. Let $l_1$ be a line passing through $A$ and tangent to $\omega_2$(other than $AD$), Let $l_2$ be a line passing through $C$ and tangent to $\omega_1$ (other than $CB$). Prove that $l_1 || l_2$.

2005 Romania National Olympiad, 3

Let $ABCD$ be a quadrilateral with $AB\parallel CD$ and $AC \perp BD$. Let $O$ be the intersection of $AC$ and $BD$. On the rays $(OA$ and $(OB$ we consider the points $M$ and $N$ respectively such that $\angle ANC = \angle BMD = 90^\circ$. We denote with $E$ the midpoint of the segment $MN$. Prove that a) $\triangle OMN \sim \triangle OBA$; b) $OE \perp AB$. [i]Claudiu-Stefan Popa[/i]

2009 CentroAmerican, 2

\item Two circles $ \Gamma_1$ and $ \Gamma_2$ intersect at points $ A$ and $ B$. Consider a circle $ \Gamma$ contained in $ \Gamma_1$ and $ \Gamma_2$, which is tangent to both of them at $ D$ and $ E$ respectively. Let $ C$ be one of the intersection points of line $ AB$ with $ \Gamma$, $ F$ be the intersection of line $ EC$ with $ \Gamma_2$ and $ G$ be the intersection of line $ DC$ with $ \Gamma_1$. Let $ H$ and $ I$ be the intersection points of line $ ED$ with $ \Gamma_1$ and $ \Gamma_2$ respectively. Prove that $ F$, $ G$, $ H$ and $ I$ are on the same circle.

2010 ELMO Shortlist, 4

Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$. [i]Amol Aggarwal.[/i]

2010 Romania Team Selection Test, 1

Let $P$ be a point in the plane and let $\gamma$ be a circle which does not contain $P$. Two distinct variable lines $\ell$ and $\ell'$ through $P$ meet the circle $\gamma$ at points $X$ and $Y$, and $X'$ and $Y'$, respectively. Let $M$ and $N$ be the antipodes of $P$ in the circles $PXX'$ and $PYY'$, respectively. Prove that the line $MN$ passes through a fixed point. [i]Mihai Chis[/i]

2006 China Team Selection Test, 1

$ABCD$ is a trapezoid with $AB || CD$. There are two circles $\omega_1$ and $\omega_2$ is the trapezoid such that $\omega_1$ is tangent to $DA$, $AB$, $BC$ and $\omega_2$ is tangent to $BC$, $CD$, $DA$. Let $l_1$ be a line passing through $A$ and tangent to $\omega_2$(other than $AD$), Let $l_2$ be a line passing through $C$ and tangent to $\omega_1$ (other than $CB$). Prove that $l_1 || l_2$.

2002 India IMO Training Camp, 1

Let $A,B$ and $C$ be three points on a line with $B$ between $A$ and $C$. Let $\Gamma_1,\Gamma_2, \Gamma_3$ be semicircles, all on the same side of $AC$ and with $AC,AB,BC$ as diameters, respectively. Let $l$ be the line perpendicular to $AC$ through $B$. Let $\Gamma$ be the circle which is tangent to the line $l$, tangent to $\Gamma_1$ internally, and tangent to $\Gamma_3$ externally. Let $D$ be the point of contact of $\Gamma$ and $\Gamma_3$. The diameter of $\Gamma$ through $D$ meets $l$ in $E$. Show that $AB=DE$.

2010 Olympic Revenge, 6

Let $ABC$ to be a triangle and $\Gamma$ its circumcircle. Also, let $D, F, G$ and $E$, in this order, on the arc $BC$ which does not contain $A$ satisfying $\angle BAD = \angle CAE$ and $\angle BAF = \angle CAG$. Let $D`, F`, G`$ and $E`$ to be the intersections of $AD, AF, AG$ and $AE$ with $BC$, respectively. Moreover, $X$ is the intersection of $DF`$ with $EG`$, $Y$ is the intersection of $D`F$ with $E`G$, $Z$ is the intersection of $D`G$ with $E`F$ and $W$ is the intersection of $EF`$ with $DG`$. Prove that $X, Y$ and $A$ are collinear, such as $W, Z$ and $A$. Moreover, prove that $\angle BAX = \angle CAZ$.

2007 Germany Team Selection Test, 2

Let $ ABCD$ be a trapezoid with parallel sides $ AB > CD$. Points $ K$ and $ L$ lie on the line segments $ AB$ and $ CD$, respectively, so that $AK/KB=DL/LC$. Suppose that there are points $ P$ and $ Q$ on the line segment $ KL$ satisfying \[\angle{APB} \equal{} \angle{BCD}\qquad\text{and}\qquad \angle{CQD} \equal{} \angle{ABC}.\] Prove that the points $ P$, $ Q$, $ B$ and $ C$ are concyclic. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]