Found problems: 393
2007 Princeton University Math Competition, 6
Triangle $ABC$ has $AC = 3$, $BC = 5$, $AB = 7$. A circle is drawn internally tangent to the circumcircle of $ABC$ at $C$, and tangent to $AB$. Let $D$ be its point of tangency with $AB$. Find $BD - DA$.
[asy]
/* File unicodetex not found. */
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(6cm);
real labelscalefactor = 2.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -4.5, xmax = 7.01, ymin = -3, ymax = 8.02; /* image dimensions */
/* draw figures */
draw(circle((1.37,2.54), 5.17));
draw((-2.62,-0.76)--(-3.53,4.2));
draw((-3.53,4.2)--(5.6,-0.44));
draw((5.6,-0.44)--(-2.62,-0.76));
draw(circle((-0.9,0.48), 2.12));
/* dots and labels */
dot((-2.62,-0.76),dotstyle);
label("$C$", (-2.46,-0.51), SW * labelscalefactor);
dot((-3.53,4.2),dotstyle);
label("$A$", (-3.36,4.46), NW * labelscalefactor);
dot((5.6,-0.44),dotstyle);
label("$B$", (5.77,-0.17), SE * labelscalefactor);
dot((0.08,2.37),dotstyle);
label("$D$", (0.24,2.61), SW * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
label("$7$",(-3.36,4.46)--(5.77,-0.17), NE * labelscalefactor);
label("$3$",(-3.36,4.46)--(-2.46,-0.51),SW * labelscalefactor);
label("$5$",(-2.46,-0.51)--(5.77,-0.17), SE * labelscalefactor);
/* end of picture */
[/asy]
2012 Brazil National Olympiad, 2
$ABC$ is a non-isosceles triangle.
$T_A$ is the tangency point of incircle of $ABC$ in the side $BC$ (define $T_B$,$T_C$ analogously).
$I_A$ is the ex-center relative to the side BC (define $I_B$,$I_C$ analogously).
$X_A$ is the mid-point of $I_BI_C$ (define $X_B$,$X_C$ analogously).
Show that $X_AT_A$,$X_BT_B$,$X_CT_C$ meet in a common point, colinear with the incenter and circumcenter of $ABC$.
2010 Indonesia TST, 2
Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that
\[
\frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}.
\]
2018 Greece Team Selection Test, 2
A triangle $ABC$ is inscribed in a circle $(C)$ .Let $G$ the centroid of $\triangle ABC$ .
We draw the altitudes $AD,BE,CF$ of the given triangle .Rays $AG$ and $GD$ meet (C) at $M$ and $N$.Prove that points $ F,E,M,N $ are concyclic.
2008 Moldova Team Selection Test, 3
Let $ \Gamma(I,r)$ and $ \Gamma(O,R)$ denote the incircle and circumcircle, respectively, of a triangle $ ABC$. Consider all the triangels $ A_iB_iC_i$ which are simultaneously inscribed in $ \Gamma(O,R)$ and circumscribed to $ \Gamma(I,r)$. Prove that the centroids of these triangles are concyclic.
2009 Tuymaada Olympiad, 2
$ M$ is the midpoint of base $ BC$ in a trapezoid $ ABCD$. A point $ P$ is chosen on the base $ AD$. The line $ PM$ meets the line $ CD$ at a point $ Q$ such that $ C$ lies between $ Q$ and $ D$. The perpendicular to the bases drawn through $ P$ meets the line $ BQ$ at $ K$. Prove that $ \angle QBC \equal{} \angle KDA$.
[i]Proposed by S. Berlov[/i]
2007 IMO Shortlist, 3
The diagonals of a trapezoid $ ABCD$ intersect at point $ P$. Point $ Q$ lies between the parallel lines $ BC$ and $ AD$ such that $ \angle AQD \equal{} \angle CQB$, and line $ CD$ separates points $ P$ and $ Q$. Prove that $ \angle BQP \equal{} \angle DAQ$.
[i]Author: Vyacheslav Yasinskiy, Ukraine[/i]
2008 Brazil National Olympiad, 1
Let $ ABCD$ be a cyclic quadrilateral and $ r$ and $ s$ the lines obtained reflecting $ AB$ with respect to the internal bisectors of $ \angle CAD$ and $ \angle CBD$, respectively. If $ P$ is the intersection of $ r$ and $ s$ and $ O$ is the center of the circumscribed circle of $ ABCD$, prove that $ OP$ is perpendicular to $ CD$.
2024 Bulgarian Autumn Math Competition, 10.2
Let $ABC$ be a scalene acute triangle, where $AL$ $(L \in BC)$ is the internal bisector of $\angle BAC$ and $M$ is the midpoint of $BC$. Let the internal bisectors of $\angle AMB$ and $\angle CMA$ intersect $AB$ and $AC$ in $P$ and $Q$, respectively. Prove that the circumcircle of $APQ$ is tangent to $BC$ if and only if $L$ belongs to it.
1997 USAMO, 4
To [i]clip[/i] a convex $n$-gon means to choose a pair of consecutive sides $AB, BC$ and to replace them by the three segments $AM, MN$, and $NC$, where $M$ is the midpoint of $AB$ and $N$ is the midpoint of $BC$. In other words, one cuts off the triangle $MBN$ to obtain a convex $(n+1)$-gon. A regular hexagon ${\cal P}_6$ of area 1 is clipped to obtain a heptagon ${\cal P}_7$. Then ${\cal P}_7$ is clipped (in one of the seven possible ways) to obtain an octagon ${\cal P}_8$, and so on. Prove that no matter how the clippings are done, the area of ${\cal P}_n$ is greater than $\frac 13$, for all $n \geq 6$.
2008 IMO Shortlist, 3
Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic.
[i]Proposed by John Cuya, Peru[/i]
2011 Bosnia Herzegovina Team Selection Test, 1
In triangle $ABC$ it holds $|BC|= \frac{1}{2}(|AB|+|AC|)$. Let $M$ and $N$ be midpoints of $AB$ and $AC$, and let $I$ be the incenter of $ABC$. Prove that $A, M, I, N$ are concyclic.
2005 CentroAmerican, 3
Let $ABC$ be a triangle. $P$, $Q$ and $R$ are the points of contact of the incircle with sides $AB$, $BC$ and $CA$, respectively. Let $L$, $M$ and $N$ be the feet of the altitudes of the triangle $PQR$ from $R$, $P$ and $Q$, respectively.
a) Show that the lines $AN$, $BL$ and $CM$ meet at a point.
b) Prove that this points belongs to the line joining the orthocenter and the circumcenter of triangle $PQR$.
[i]Aarón Ramírez, El Salvador[/i]
2014 Tuymaada Olympiad, 2
The points $K$ and $L$ on the side $BC$ of a triangle $\triangle{ABC}$ are such that $\widehat{BAK}=\widehat{CAL}=90^\circ$. Prove that the midpoint of the altitude drawn from $A$, the midpoint of $KL$ and the circumcentre of $\triangle{ABC}$ are collinear.
[i](A. Akopyan, S. Boev, P. Kozhevnikov)[/i]
2007 AMC 12/AHSME, 11
A finite sequence of three-digit integers has the property that the tens and units digits of each term are, respectively, the hundreds and tens digits of the next term, and the tens and units digits of the last term are, respectively, the hundreds and tens digits of the first term. For example, such a sequence might begin with the terms $ 247,$ $ 275,$ and $ 756$ and end with the term $ 824.$ Let $ \mathcal{S}$ be the sum of all the terms in the sequence. What is the largest prime factor that always divides $ \mathcal{S}?$
$ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 7 \qquad \textbf{(C)}\ 13 \qquad \textbf{(D)}\ 37 \qquad \textbf{(E)}\ 43$
2018 India IMO Training Camp, 2
In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.
2010 Iran MO (3rd Round), 3
in a quadrilateral $ABCD$ digonals are perpendicular to each other. let $S$ be the intersection of digonals. $K$,$L$,$M$ and $N$ are reflections of $S$ to $AB$,$BC$,$CD$ and $DA$. $BN$ cuts the circumcircle of $SKN$ in $E$ and $BM$ cuts the circumcircle of $SLM$ in $F$. prove that $EFLK$ is concyclic.(20 points)
2010 Indonesia TST, 3
Two parallel lines $r,s$ and two points $P \in r$ and $Q \in s$ are given in a plane. Consider all pairs of circles $(C_P, C_Q)$ in that plane such that $C_P$ touches $r$ at $P$ and $C_Q$ touches $s$ at $Q$ and which touch each other externally at some point $T$. Find the locus of $T$.
2010 Danube Mathematical Olympiad, 2
Given a triangle $ABC$, let $A',B',C'$ be the perpendicular feet dropped from the centroid $G$ of the triangle $ABC$ onto the sides $BC,CA,AB$ respectively. Reflect $A',B',C'$ through $G$ to $A'',B'',C''$ respectively. Prove that the lines $AA'',BB'',CC''$ are concurrent.
2013 Lusophon Mathematical Olympiad, 6
Consider a triangle $ABC$. Let $S$ be a circumference in the interior of the triangle that is tangent to the sides $BC$, $CA$, $AB$ at the points $D$, $E$, $F$ respectively. In the exterior of the triangle we draw three circumferences $S_A$, $S_B$, $S_C$. The circumference $S_A$ is tangent to $BC$ at $L$ and to the prolongation of the lines $AB$, $AC$ at the points $M$, $N$ respectively. The circumference $S_B$ is tangent to $AC$ at $E$ and to the prolongation of the line $BC$ at $P$. The circumference $S_C$ is tangent to $AB$ at $F$ and to the prolongation of the line $BC$ at $Q$. Show that the lines $EP$, $FQ$ and $AL$ meet at a point of the circumference $S$.
2005 Vietnam Team Selection Test, 1
Let $(I),(O)$ be the incircle, and, respectiely, circumcircle of $ABC$. $(I)$ touches $BC,CA,AB$ in $D,E,F$ respectively. We are also given three circles $\omega_a,\omega_b,\omega_c$, tangent to $(I),(O)$ in $D,K$ (for $\omega_a$), $E,M$ (for $\omega_b$), and $F,N$ (for $\omega_c$).
[b]a)[/b] Show that $DK,EM,FN$ are concurrent in a point $P$;
[b]b)[/b] Show that the orthocenter of $DEF$ lies on $OP$.
2007 China Team Selection Test, 1
Points $ A$ and $ B$ lie on the circle with center $ O.$ Let point $ C$ lies outside the circle; let $ CS$ and $ CT$ be tangents to the circle. $ M$ be the midpoint of minor arc $ AB$ of $ (O).$ $ MS,\,MT$ intersect $ AB$ at points $ E,\,F$ respectively. The lines passing through $ E,\,F$ perpendicular to $ AB$ cut $ OS,\,OT$ at $ X$ and $ Y$ respectively.
A line passed through $ C$ intersect the circle $ (O)$ at $ P,\,Q$ ($ P$ lies on segment $ CQ$). Let $ R$ be the intersection of $ MP$ and $ AB,$ and let $ Z$ be the circumcentre of triangle $ PQR.$
Prove that: $ X,\,Y,\,Z$ are collinear.
2013 Iran MO (3rd Round), 2
We define the distance between two circles $\omega ,\omega '$by the length of the common external tangent of the circles and show it by $d(\omega , \omega ')$. If two circles doesn't have a common external tangent then the distance between them is undefined. A point is also a circle with radius $0$ and the distance between two cirlces can be zero.
(a) [b]Centroid.[/b] $n$ circles $\omega_1,\dots, \omega_n$ are fixed on the plane. Prove that there exists a unique circle $\overline \omega$ such that for each circle $\omega$ on the plane the square of distance between $\omega$ and $\overline \omega$ minus the sum of squares of distances of $\omega$ from each of the $\omega_i$s $1\leq i \leq n$ is constant, in other words:\[d(\omega,\overline \omega)^2-\frac{1}{n}{\sum_{i=1}}^n d(\omega_i,\omega)^2= constant\]
(b) [b]Perpendicular Bisector.[/b] Suppose that the circle $\omega$ has the same distance from $\omega_1,\omega_2$. Consider $\omega_3$ a circle tangent to both of the common external tangents of $\omega_1,\omega_2$. Prove that the distance of $\omega$ from centroid of $\omega_1 , \omega_2$ is not more than the distance of $\omega$ and $\omega_3$. (If the distances are all defined)
(c) [b]Circumcentre.[/b] Let $C$ be the set of all circles that each of them has the same distance from fixed circles $\omega_1,\omega_2,\omega_3$. Prove that there exists a point on the plane which is the external homothety center of each two elements of $C$.
(d) [b]Regular Tetrahedron.[/b] Does there exist 4 circles on the plane which the distance between each two of them equals to $1$?
Time allowed for this problem was 150 minutes.
2014 Taiwan TST Round 3, 3
Let $M$ be any point on the circumcircle of triangle $ABC$. Suppose the tangents from $M$ to the incircle meet $BC$ at two points $X_1$ and $X_2$. Prove that the circumcircle of triangle $MX_1X_2$ intersects the circumcircle of $ABC$ again at the tangency point of the $A$-mixtilinear incircle.
MIPT Undergraduate Contest 2019, 1.1 & 2.1
In $\mathbb{R}^3$, let there be a cube $Q$ and a sequence of other cubes, all of which are homothetic to $Q$ with coefficients of homothety that are each smaller than $1$. Prove that if this sequence of homothetic cubes completely fills $Q$, the sum of their coefficients of homothety is not less than $4$.