This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2000 All-Russian Olympiad Regional Round, 8.7

Tags: geometry , incenter
Angle bisectors $AD$ and $CE$ of triangle $ABC$ intersect at point $O$. A line symmetrical to $ AB$ with respect to $CE$ intersects the line symmetric $BC$ with respect to $AD$, at point $K$. Prove that $KO \perp AC$.

2022 Israel TST, 3

Scalene triangle $ABC$ has incenter $I$ and circumcircle $\Omega$ with center $O$. $H$ is the orthocenter of triangle $BIC$, and $T$ is a point on $\Omega$ for which $\angle ATI=90^\circ$. Circle $(AIO)$ intersects line $IH$ again at $X$. Show that the lines $AX, HT$ intersect on $\Omega$.

2007 Junior Balkan Team Selection Tests - Moldova, 3

Tags: incenter , geometry
Let $ABC$ be a triangle with $BC = a, AC = b$ and $AB = c$. A point $P$ inside the triangle has the property that for any line passing through $P$ and intersects the lines $AB$ and $AC$ in the distinct points $E$ and $F$ we have the relation $\frac{1}{AE} +\frac{1}{AF} =\frac{a + b + c}{bc}$. Prove that the point $P$ is the center of the circle inscribed in the triangle $ABC$.

2011 N.N. Mihăileanu Individual, 4

Consider a triangle $ ABC $ having incenter $ I $ and inradius $ r. $ Let $ D $ be the tangency of $ ABC $ 's incircle with $ BC, $ and $ E $ on the line $ BC $ such that $ AE $ is perpendicular to $ BC, $ and $ M\neq E $ on the segment $ AE $ such that $ AM=r. $ [b]a)[/b] Give an idenity for $ \frac{BD}{DC} $ involving only the lengths of the sides of the triangle. [b]b)[/b] Prove that $ AB \cdot \overrightarrow{IC} +BC\cdot \overrightarrow{IA} +CA\cdot \overrightarrow{IB} =0. $ [b]c)[/b] Show that $ MI $ passes through the middle of the side $ BC. $ [i]Cătălin Zârnă[/i]

2015 India Regional MathematicaI Olympiad, 1

In a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ intersect at $X$. Let the circumcircles of triangles $AXD$ and $BXC$ intersect again at $Y$ . If $X$ is the incentre of triangle $ABY$ , show that $\angle CAD = 90^o$.

2010 Contests, 1

$D, \: E , \: F$ are points on the sides $AB, \: BC, \: CA,$ respectively, of a triangle $ABC$ such that $AD=AF, \: BD=BE,$ and $DE=DF.$ Let $I$ be the incenter of the triangle $ABC,$ and let $K$ be the point of intersection of the line $BI$ and the tangent line through $A$ to the circumcircle of the triangle $ABI.$ Show that $AK=EK$ if $AK=AD.$

KoMaL A Problems 2024/2025, A. 885

Let triangle $ABC$ be a given acute scalene triangle with altitudes $BE$ and $CF$. Let $D$ be the point where the incircle of $\,\triangle ABC$ touches side $BC$. The circumcircle of $\triangle BDE$ meets line $AB$ again at point $K$, the circumcircle of $\triangle CDF$ meets line $AC$ again at point $L$. The circumcircle of $\triangle BDE$ and $\triangle CDF$ meet line $KL$ again at $X$ and $Y$, respectively. Prove that the incenter of $\triangle DXY$ lies on the incircle of $\,\triangle ABC$. [i]Proposed by Luu Dong, Vietnam[/i]

1992 IMO Longlists, 5

Let $I,H,O$ be the incenter, centroid, and circumcenter of the nonisosceles triangle $ABC$. Prove that $AI \parallel HO$ if and only if $\angle BAC =120^{\circ}$.

2006 Romania Team Selection Test, 1

The circle of center $I$ is inscribed in the convex quadrilateral $ABCD$. Let $M$ and $N$ be points on the segments $AI$ and $CI$, respectively, such that $\angle MBN = \frac 12 \angle ABC$. Prove that $\angle MDN = \frac 12 \angle ADC$.

2013 Iran MO (3rd Round), 2

Let $ABC$ be a triangle with circumcircle $(O)$. Let $M,N$ be the midpoint of arc $AB,AC$ which does not contain $C,B$ and let $M',N'$ be the point of tangency of incircle of $\triangle ABC$ with $AB,AC$. Suppose that $X,Y$ are foot of perpendicular of $A$ to $MM',NN'$. If $I$ is the incenter of $\triangle ABC$ then prove that quadrilateral $AXIY$ is cyclic if and only if $b+c=2a$.

2019 Romania Team Selection Test, 1

Let $ I,O $ denote the incenter, respectively, the circumcenter of a triangle $ ABC. $ The $ A\text{-excircle} $ touches the lines $ AB,AC,BC $ at $ K,L, $ respectively, $ M. $ The midpoint of $ KL $ lies on the circumcircle of $ ABC. $ Show that the points $ I,M,O $ are collinear. [i]Павел Кожевников[/i]

1997 IMO Shortlist, 16

In an acute-angled triangle $ ABC,$ let $ AD,BE$ be altitudes and $ AP,BQ$ internal bisectors. Denote by $ I$ and $ O$ the incenter and the circumcentre of the triangle, respectively. Prove that the points $ D, E,$ and $ I$ are collinear if and only if the points $ P, Q,$ and $ O$ are collinear.

2005 China Team Selection Test, 2

In acute angled triangle $ABC$, $BC=a$,$CA=b$,$AB=c$, and $a>b>c$. $I,O,H$ are the incentre, circumcentre and orthocentre of $\triangle{ABC}$ respectively. Point $D \in BC$, $E \in CA$ and $AE=BD$, $CD+CE=AB$. Let the intersectionf of $BE$ and $AD$ be $K$. Prove that $KH \parallel IO$ and $KH = 2IO$.

2012 Tournament of Towns, 4

Given a triangle $ABC$. Suppose I is its incentre, and $X, Y, Z$ are the incentres of triangles $AIB, BIC$ and $AIC$ respectively. The incentre of triangle $XYZ$ coincides with $I$. Is it necessarily true that triangle $ABC$ is regular?

2018 India PRMO, 29

Let $D$ be an interior point of the side $BC$ of a triangle $ABC$. Let $I_1$ and $I_2$ be the incentres of triangles $ABD$ and $ACD$ respectively. Let $AI_1$ and $AI_2$ meet $BC$ in $E$ and $F$ respectively. If $\angle BI_1E = 60^o$, what is the measure of $\angle CI_2F$ in degrees?

2011 Switzerland - Final Round, 2

Let $\triangle{ABC}$ be an acute-angled triangle and let $D$, $E$, $F$ be points on $BC$, $CA$, $AB$, respectively, such that \[\angle{AFE}=\angle{BFD}\mbox{,}\quad\angle{BDF}=\angle{CDE}\quad\mbox{and}\quad\angle{CED}=\angle{AEF}\mbox{.}\] Prove that $D$, $E$ and $F$ are the feet of the perpendiculars through $A$, $B$ and $C$ on $BC$, $CA$ and $AB$, respectively. [i](Swiss Mathematical Olympiad 2011, Final round, problem 2)[/i]

2024 Taiwan TST Round 3, 2

Let $I$ be the incenter of triangle $ABC$, and let $\omega$ be its incircle. Let $E$ and $F$ be the points of tangency of $\omega$ with $CA$ and $AB$, respectively. Let $X$ and $Y$ be the intersections of the circumcircle of $BIC$ and $\omega$. Take a point $T$ on $BC$ such that $\angle AIT$ is a right angle. Let $G$ be the intersection of $EF$ and $BC$, and let $Z$ be the intersection of $XY$ and $AT$. Prove that $AZ$, $ZG$, and $AI$ form an isosceles triangle. [i]Proposed by Li4 and usjl.[/i]

2007 IMO, 4

In triangle $ ABC$ the bisector of angle $ BCA$ intersects the circumcircle again at $ R$, the perpendicular bisector of $ BC$ at $ P$, and the perpendicular bisector of $ AC$ at $ Q$. The midpoint of $ BC$ is $ K$ and the midpoint of $ AC$ is $ L$. Prove that the triangles $ RPK$ and $ RQL$ have the same area. [i]Author: Marek Pechal, Czech Republic[/i]

1997 Romania Team Selection Test, 4

Let $w$ be a circle and $AB$ a line not intersecting $w$. Given a point $P_{0}$ on $w$, define the sequence $P_{0},P_{1},\ldots $ as follows: $P_{n\plus{}1}$ is the second intersection with $w$ of the line passing through $B$ and the second intersection of the line $AP_{n}$ with $w$. Prove that for a positive integer $k$, if $P_{0}\equal{}P_{k}$ for some choice of $P_{0}$, then $P_{0}\equal{}P_{k}$ for any choice of $P_{0}$. [i]Gheorge Eckstein[/i]

1984 IMO Longlists, 48

Let $ABC$ be a triangle with interior angle bisectors $AA_1, BB_1, CC_1$ and incenter $I$. If $\sigma[IA_1B] + \sigma[IB_1C] + \sigma[IC_1A] = \frac{1}{2}\sigma[ABC]$, where $\sigma[ABC]$ denotes the area of $ABC$, show that $ABC$ is isosceles.

2022 China Team Selection Test, 4

Tags: geometry , incenter
Let $ABC$ be an acute triangle with $\angle ACB>2 \angle ABC$. Let $I$ be the incenter of $ABC$, $K$ is the reflection of $I$ in line $BC$. Let line $BA$ and $KC$ intersect at $D$. The line through $B$ parallel to $CI$ intersects the minor arc $BC$ on the circumcircle of $ABC$ at $E(E \neq B)$. The line through $A$ parallel to $BC$ intersects the line $BE$ at $F$. Prove that if $BF=CE$, then $FK=AD$.

2009 Iran Team Selection Test, 10

Let $ ABC$ be a triangle and $ AB\ne AC$ . $ D$ is a point on $ BC$ such that $ BA \equal{} BD$ and $ B$ is between $ C$ and $ D$ . Let $ I_{c}$ be center of the circle which touches $ AB$ and the extensions of $ AC$ and $ BC$ . $ CI_{c}$ intersect the circumcircle of $ ABC$ again at $ T$ . If $ \angle TDI_{c} \equal{} \frac {\angle B \plus{} \angle C}{4}$ then find $ \angle A$

1999 AIME Problems, 12

The inscribed circle of triangle $ABC$ is tangent to $\overline{AB}$ at $P,$ and its radius is 21. Given that $AP=23$ and $PB=27,$ find the perimeter of the triangle.

1988 China Team Selection Test, 3

In triangle $ABC$, $\angle C = 30^{\circ}$, $O$ and $I$ are the circumcenter and incenter respectively, Points $D \in AC$ and $E \in BC$, such that $AD = BE = AB$. Prove that $OI = DE$ and $OI \bot DE$.

2008 Kazakhstan National Olympiad, 2

Suppose that $ B_1$ is the midpoint of the arc $ AC$, containing $ B$, in the circumcircle of $ \triangle ABC$, and let $ I_b$ be the $ B$-excircle's center. Assume that the external angle bisector of $ \angle ABC$ intersects $ AC$ at $ B_2$. Prove that $ B_2I$ is perpendicular to $ B_1I_B$, where $ I$ is the incenter of $ \triangle ABC$.