This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2014 ELMO Shortlist, 8

In triangle $ABC$ with incenter $I$ and circumcenter $O$, let $A',B',C'$ be the points of tangency of its circumcircle with its $A,B,C$-mixtilinear circles, respectively. Let $\omega_A$ be the circle through $A'$ that is tangent to $AI$ at $I$, and define $\omega_B, \omega_C$ similarly. Prove that $\omega_A,\omega_B,\omega_C$ have a common point $X$ other than $I$, and that $\angle AXO = \angle OXA'$. [i]Proposed by Sammy Luo[/i]

2009 Moldova National Olympiad, 10.3

Let the triangle $ABC$ be with $| AB | > | AC |$. Point M is the midpoint of the side $[BC]$, and point $I$ is the center of the circle inscribed in the triangle ABC such that the relation $| AI | = | MI |$. Prove that points $A, B, M, I$ are located on the same circle.

1991 India National Olympiad, 9

Triangle $ABC$ has an incenter $I$ l its incircle touches the side $BC$ at $T$. The line through $T$ parallel to $IA$ meets the incircle again at $S$ and the tangent to the incircle at $S$ meets $AB , AC$ at points $C' , B'$ respectively. Prove that triangle $AB'C'$ is similar to triangle $ABC$.

2005 ISI B.Stat Entrance Exam, 5

Consider an acute angled triangle $PQR$ such that $C,I$ and $O$ are the circumcentre, incentre and orthocentre respectively. Suppose $\angle QCR, \angle QIR$ and $\angle QOR$, measured in degrees, are $\alpha, \beta$ and $\gamma$ respectively. Show that \[\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}>\frac{1}{45}\]

2010 Kyiv Mathematical Festival, 3

Let $O$ be the circumcenter and $I$ be the incenter of triangle $ABC.$ Prove that if $AI\perp OB$ and $BI\perp OC$ then $CI\parallel OA$.

2020 Iran Team Selection Test, 4

Let $ABC$ be an isosceles triangle ($AB=AC$) with incenter $I$. Circle $\omega$ passes through $C$ and $I$ and is tangent to $AI$. $\omega$ intersects $AC$ and circumcircle of $ABC$ at $Q$ and $D$, respectively. Let $M$ be the midpoint of $AB$ and $N$ be the midpoint of $CQ$. Prove that $AD$, $MN$ and $BC$ are concurrent. [i]Proposed by Alireza Dadgarnia[/i]

2011 Saudi Arabia IMO TST, 2

Let $ABC$ be a triangle with $AB\ne AC$. Its incircle has center $I$ and touches the side $BC$ at point $D$. Line $AI$ intersects the circumcircle $\omega$ of triangle $ABC$ at $M$ and $DM$ intersects again $\omega$ at $P$. Prove that $\angle API= 90^o$.

1987 India National Olympiad, 8

Three congruent circles have a common point $ O$ and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the incentre and the circumcentre of the triangle and the common point $ O$ are collinear.

1986 IMO Longlists, 44

The circle inscribed in a triangle $ABC$ touches the sides $BC,CA,AB$ in $D,E, F$, respectively, and $X, Y,Z$ are the midpoints of $EF, FD,DE$, respectively. Prove that the centers of the inscribed circle and of the circles around $XYZ$ and $ABC$ are collinear.

Ukrainian TYM Qualifying - geometry, 2014.22

In $\vartriangle ABC$ on the sides $BC, CA, AB$ mark feet of altitudes $H_1, H_2, H_3$ and the midpoint of sides $M_1, M_3, M_3$. Let $H$ be orthocenter $\vartriangle ABC$. Suppose that $X_2, X_3$ are points symmetric to $H_1$ wrt $BH_2$ and $CH_3$. Lines $M_3X_2$ and $M_2X_3$ intersect at point $X$. Similarly, $Y_3,Y_1$ are points symmetric to $H_2$ wrt $C_3H$ and $AH_1$.Lines $M_1Y_3$ and $M_3Y_1$ intersect at point $Y.$ Finally, $Z_1,Z_2$ are points symmetric to $H_3$ wrt $AH_1$ and $BH_2$. Lines $M_1Z_2$ and $M_2Z_1$ intersect at the point $Z$ Prove that $H$ is the incenter $\vartriangle XYZ$ .

2008 Sharygin Geometry Olympiad, 4

Tags: incenter , geometry
(A.Zaslavsky) Given three points $ C_0$, $ C_1$, $ C_2$ on the line $ l$. Find the locus of incenters of triangles $ ABC$ such that points $ A$, $ B$ lie on $ l$ and the feet of the median, the bisector and the altitude from $ C$ coincide with $ C_0$, $ C_1$, $ C_2$.

Indonesia MO Shortlist - geometry, g8

Given an acute triangle $ABC$ and points $D$, $E$, $F$ on sides $BC$, $CA$ and $AB$, respectively. If the lines $DA$, $EB$ and $FC$ are the angle bisectors of triangle $DEF$, prove that the three lines are the altitudes of triangle $ABC$.

2009 Iran MO (3rd Round), 4

4-Point $ P$ is taken on the segment $ BC$ of the scalene triangle $ ABC$ such that $ AP \neq AB,AP \neq AC$.$ l_1,l_2$ are the incenters of triangles $ ABP,ACP$ respectively. circles $ W_1,W_2$ are drawn centered at $ l_1,l_2$ and with radius equal to $ l_1P,l_2P$,respectively. $ W_1,W_2$ intersects at $ P$ and $ Q$. $ W_1$ intersects $ AB$ and $ BC$ at $ Y_1( \mbox{the intersection closer to B})$ and $ X_1$,respectively. $ W_2$ intersects $ AC$ and $ BC$ at $ Y_2(\mbox{the intersection closer to C})$ and $ X_2$,respectively.PROVE THE CONCURRENCY OF $ PQ,X_1Y_1,X_2Y_2$.

2011 Costa Rica - Final Round, 6

Let $ABC$ be a triangle. The incircle of $ABC$ touches $BC,AC,AB$ at $D,E,F$, respectively. Each pair of the incircles of triangles $AEF, BDF,CED$ has two pair of common external tangents, one of them being one of the sides of $ABC$. Show that the other three tangents divide triangle $DEF$ into three triangles and three parallelograms.

2004 Iran MO (2nd round), 5

The interior bisector of $\angle A$ from $\triangle ABC$ intersects the side $BC$ and the circumcircle of $\Delta ABC$ at $D,M$, respectively. Let $\omega$ be a circle with center $M$ and radius $MB$. A line passing through $D$, intersects $\omega$ at $X,Y$. Prove that $AD$ bisects $\angle XAY$.

2005 Slovenia National Olympiad, Problem 3

Tags: ratio , incenter , geometry
Suppose that a triangle $ABC$ with incenter $I$ satisfies $CA+AI=BC$. Find the ratio between the measures of the angles $\angle BAC$ and $\angle CBA$.

2012 Dutch IMO TST, 1

Tags: geometry , incenter
A line, which passes through the incentre $I$ of the triangle $ABC$, meets its sides $AB$ and $BC$ at the points $M$ and $N$ respectively. The triangle $BMN$ is acute. The points $K,L$ are chosen on the side $AC$ such that $\angle ILA=\angle IMB$ and $\angle KC=\angle INB$. Prove that $AM+KL+CN=AC$. [i]S. Berlov[/i]

2010 Turkey Team Selection Test, 1

$D, \: E , \: F$ are points on the sides $AB, \: BC, \: CA,$ respectively, of a triangle $ABC$ such that $AD=AF, \: BD=BE,$ and $DE=DF.$ Let $I$ be the incenter of the triangle $ABC,$ and let $K$ be the point of intersection of the line $BI$ and the tangent line through $A$ to the circumcircle of the triangle $ABI.$ Show that $AK=EK$ if $AK=AD.$

2022 Belarusian National Olympiad, 11.6

Tags: incenter , geometry
The incircle of a right-angled triangle $ABC$ touches hypotenus $AB$ at $P$, $BC$ and $AC$ at $R$ and $Q$ respectively. $C_1$ and $C_2$ are reflections of $C$ in $PQ$ and $PR$. Find the angle $C_1IC_2$, where $I$ is the incenter of $ABC$.

2006 Moldova Team Selection Test, 1

Let the point $P$ in the interior of the triangle $ABC$. $(AP, (BP, (CP$ intersect the circumcircle of $ABC$ at $A_{1}, B_{1}, C_{1}$. Prove that the maximal value of the sum of the areas $A_{1}BC$, $B_{1}AC$, $C_{1}AB$ is $p(R-r)$, where $p, r, R$ are the usual notations for the triangle $ABC$.

2010 Belarus Team Selection Test, 3.1

Let $I$ be an incenter of a triangle $ABC, A_1,B_1,C_1$ be intersection points of the circumcircle of the triangle $ABC$ and the lines $AI, BI, Cl$ respectively. Prove that a) $\frac{AI}{IA_1}+ \frac{BI}{IB_1}+ \frac{CI}{IC_1}\ge 3$ b) $AI \cdot BI \cdot CI \le I_1A_1\cdot I_2B_1 \cdot I_1C_1$ (D. Pirshtuk)

2002 France Team Selection Test, 2

Let $ ABC$ be a non-equilateral triangle. Denote by $ I$ the incenter and by $ O$ the circumcenter of the triangle $ ABC$. Prove that $ \angle AIO\leq\frac{\pi}{2}$ holds if and only if $ 2\cdot BC\leq AB\plus{}AC$.

2015 India Regional MathematicaI Olympiad, 1

Let \(ABC\) be a triangle. Let \(B'\) denote the reflection of \(b\) in the internal angle bisector \(l\) of \(\angle A\).Show that the circumcentre of the triangle \(CB'I\) lies on the line \(l\) where \(I\) is the incentre of \(ABC\).

2013 Sharygin Geometry Olympiad, 7

Let $BD$ be a bisector of triangle $ABC$. Points $I_a$, $I_c$ are the incenters of triangles $ABD$, $CBD$ respectively. The line $I_aI_c$ meets $AC$ in point $Q$. Prove that $\angle DBQ = 90^\circ$.

2017-IMOC, G3

Tags: incenter , geometry
Let $ABCD$ be a circumscribed quadrilateral with center $O$. Assume the incenters of $\vartriangle AOC, \vartriangle BOD$ are $I_1, I_2$, respectively. If circumcircles of $\vartriangle AI_1C$ and $\vartriangle BI_2D$ intersect at $X$, prove the following identity: $(AB \cdot CX \cdot DX)^2 + (CD\cdot AX \cdot BX)^2 = (AD\cdot BX \cdot CX)^2 + (BC \cdot AX \cdot DX)^2$