This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2012 Balkan MO, 4

Let $\mathbb{Z}^+$ be the set of positive integers. Find all functions $f:\mathbb{Z}^+ \rightarrow\mathbb{Z}^+$ such that the following conditions both hold: (i) $f(n!)=f(n)!$ for every positive integer $n$, (ii) $m-n$ divides $f(m)-f(n)$ whenever $m$ and $n$ are different positive integers.

2011 AMC 12/AHSME, 25

Triangle $ABC$ has $\angle BAC=60^\circ$, $\angle CBA \le 90^\circ$, $BC=1$, and $AC \ge AB$. Let $H$, $I$, and $O$ be the orthocenter, incenter, and circumcenter of $\triangle ABC$, respectively. Assume that the area of the pentagon $BCOIH$ is the maximum possible. What is $\angle CBA$? $\textbf{(A)}\ 60 ^\circ \qquad \textbf{(B)}\ 72 ^\circ\qquad \textbf{(C)}\ 75 ^\circ \qquad \textbf{(D)}\ 80 ^\circ\qquad \textbf{(E)}\ 90 ^\circ$

2007 Romania Team Selection Test, 4

The points $M, N, P$ are chosen on the sides $BC, CA, AB$ of a triangle $\Delta ABC$, such that the triangle $\Delta MNP$ is acute-angled. We denote with $x$ the length of the shortest altitude of the triangle $\Delta ABC$, and with $X$ the length of the longest altitudes of the triangle $\Delta MNP$. Prove that $x \leq 2X$.

PEN S Problems, 15

Let $\alpha(n)$ be the number of digits equal to one in the dyadic representation of a positive integer $n$. Prove that [list=a] [*] the inequality $\alpha(n^2 ) \le \frac{1}{2} \alpha(n) (1+\alpha(n))$ holds, [*] equality is attained for infinitely $n\in\mathbb{N}$, [*] there exists a sequence $\{n_i\}$ such that $\lim_{i \to \infty} \frac{ \alpha({n_{i}}^2 )}{ \alpha(n_{i}) } = 0$.[/list]

2004 All-Russian Olympiad, 3

In a country there are several cities; some of these cities are connected by airlines, so that an airline connects exactly two cities in each case and both flight directions are possible. Each airline belongs to one of $k$ flight companies; two airlines of the same flight company have always a common final point. Show that one can partition all cities in $k+2$ groups in such a way that two cities from exactly the same group are never connected by an airline with each other.

2008 SEEMOUS, Problem 3

Let $\mathcal M_n(\mathbb R)$ denote the set of all real $n\times n$ matrices. Find all surjective functions $f:\mathcal M_n(\mathbb R)\to\{0,1,\ldots,n\}$ which satisfy $$f(XY)\le\min\{f(X),f(Y)\}$$for all $X,Y\in\mathcal M_n(\mathbb R)$.

2013 Today's Calculation Of Integral, 868

In the coordinate space, define a square $S$, defined by the inequality $|x|\leq 1,\ |y|\leq 1$ on the $xy$-plane, with four vertices $A(-1,\ 1,\ 0),\ B(1,\ 1,\ 0),\ C(1,-1,\ 0), D(-1,-1,\ 0)$. Let $V_1$ be the solid by a rotation of the square $S$ about the line $BD$ as the axis of rotation, and let $V_2$ be the solid by a rotation of the square $S$ about the line $AC$ as the axis of rotation. (1) For a real number $t$ such that $0\leq t<1$, find the area of cross section of $V_1$ cut by the plane $x=t$. (2) Find the volume of the common part of $V_1$ and $V_2$.

2007 Today's Calculation Of Integral, 202

Let $a,\ b$ are real numbers such that $a+b=1$. Find the minimum value of the following integral. \[\int_{0}^{\pi}(a\sin x+b\sin 2x)^{2}\ dx \]

1966 Swedish Mathematical Competition, 2

$a_1 + a_2 + ... + a_n = 0$, for some $k$ we have $a_j \le 0$ for $j \le k$ and $a_j \ge 0$ for $j > k$. If ai are not all $0$, show that $a_1 + 2a_2 + 3a_3 + ... + na_n > 0$.

1994 Czech And Slovak Olympiad IIIA, 4

Let $a_1,a_2,...$ be a sequence of natural numbers such that for each $n$, the product $(a_n - 1)(a_n- 2)...(a_n - n^2)$ is a positive integral multiple of $n^{n^2-1}$. Prove that for any finite set $P$ of prime numbers the following inequality holds: $$\sum_{p\in P}\frac{1}{\log_p a_p}< 1$$

2007 Singapore Team Selection Test, 2

Tags: inequalities
Prove the inequality \[\sum_{i<j} \frac{a_ia_j}{a_i \plus{} a_j} \le \frac{n}{2(a_1 \plus{} a_2 \plus{}\cdots \plus{} a_n)}\sum_{i<j} a_ia_j\] for all positive real numbers $ a_1, a_2,\ldots , a_n$.

2011 AIME Problems, 8

In triangle $ABC$, $BC = 23$, $CA = 27$, and $AB = 30$. Points $V$ and $W$ are on $\overline{AC}$ with $V$ on $\overline{AW}$, points $X$ and $Y$ are on $\overline{BC}$ with $X$ on $\overline{CY}$, and points $Z$ and $U$ are on $\overline{AB}$ with $Z$ on $\overline{BU}$. In addition, the points are positioned so that $\overline{UV} \parallel \overline{BC}$, $\overline{WX} \parallel \overline{AB}$, and $\overline{YZ} \parallel \overline{CA}$. Right angle folds are then made along $\overline{UV}$, $\overline{WX}$, and $\overline{YZ}$. The resulting figure is placed on a level floor to make a table with triangular legs. Let $h$ be the maximum possible height of a table constructed from triangle $ABC$ whose top is parallel to the floor. Then $h$ can be written in the form $\tfrac{k \sqrt{m}}{n}$, where $k$ and $n$ are relatively prime positive integers and $m$ is a positive integer that is not divisible by the square of any prime. Find $k + m + n$. [asy] unitsize(1 cm); pair translate; pair[] A, B, C, U, V, W, X, Y, Z; A[0] = (1.5,2.8); B[0] = (3.2,0); C[0] = (0,0); U[0] = (0.69*A[0] + 0.31*B[0]); V[0] = (0.69*A[0] + 0.31*C[0]); W[0] = (0.69*C[0] + 0.31*A[0]); X[0] = (0.69*C[0] + 0.31*B[0]); Y[0] = (0.69*B[0] + 0.31*C[0]); Z[0] = (0.69*B[0] + 0.31*A[0]); translate = (7,0); A[1] = (1.3,1.1) + translate; B[1] = (2.4,-0.7) + translate; C[1] = (0.6,-0.7) + translate; U[1] = U[0] + translate; V[1] = V[0] + translate; W[1] = W[0] + translate; X[1] = X[0] + translate; Y[1] = Y[0] + translate; Z[1] = Z[0] + translate; draw (A[0]--B[0]--C[0]--cycle); draw (U[0]--V[0],dashed); draw (W[0]--X[0],dashed); draw (Y[0]--Z[0],dashed); draw (U[1]--V[1]--W[1]--X[1]--Y[1]--Z[1]--cycle); draw (U[1]--A[1]--V[1],dashed); draw (W[1]--C[1]--X[1]); draw (Y[1]--B[1]--Z[1]); dot("$A$",A[0],N); dot("$B$",B[0],SE); dot("$C$",C[0],SW); dot("$U$",U[0],NE); dot("$V$",V[0],NW); dot("$W$",W[0],NW); dot("$X$",X[0],S); dot("$Y$",Y[0],S); dot("$Z$",Z[0],NE); dot(A[1]); dot(B[1]); dot(C[1]); dot("$U$",U[1],NE); dot("$V$",V[1],NW); dot("$W$",W[1],NW); dot("$X$",X[1],dir(-70)); dot("$Y$",Y[1],dir(250)); dot("$Z$",Z[1],NE); [/asy]

2015 Thailand TSTST, 1

Tags: inequalities
Let $x, y, z$ be positive real numbers satisfying $x + y + z =\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}$. Prove that $$\frac{3}{2}\leq\frac{3}{\sqrt[3]{xyz}(\sqrt[3]{xyz}+1)}\leq\frac{1}{x(y+1)}+\frac{1}{y(z+1)}+\frac{1}{z(x+1)}.$$

2007 Singapore Senior Math Olympiad, 5

Tags: algebra , inequalities , min , max
Find the maximum and minimum of $x + y$ such that $x + y = \sqrt{2x-1}+\sqrt{4y+3}$

1962 German National Olympiad, 2

Let $u, v$ and$ w$ be any positive numbers smaller than $1$. Prove that among the numbers $u(1 -v)$, $v(1 -w)$, $w(1 - u)$ there is always at least one value not greater than $\frac14$ .

2002 Tournament Of Towns, 3

In an infinite increasing sequence of positive integers, every term from the $2002^{\text{th}}$ term divides the sum of all preceding terms. Prove that every term starting from some term is equal to the sum of all preceding terms.

2018 Peru MO (ONEM), 2

2) Let $a, b, c$ be real numbers such that $$a+\frac{b}{c}=b+\frac{c}{a}=c+\frac{a}{b}=1$$a) Prove that $ab+bc+ca=0$ and $a+b+c=3$. b) Prove that $|a|+|b|+|c|< 5$

2017 Spain Mathematical Olympiad, 5

Let $a,b,c$ be positive real numbers so that $a+b+c = \frac{1}{\sqrt{3}}$. Find the maximum value of $$27abc+a\sqrt{a^2+2bc}+b\sqrt{b^2+2ca}+c\sqrt{c^2+2ab}.$$

2009 IberoAmerican Olympiad For University Students, 3

Tags: inequalities
Let $a, b, c, d, e \in \mathbb{R}^+$ and $f:\{(x, y) \in (\mathbb{R}^+)^2|c-dx-ey > 0\}\to \mathbb{R}^+$ be given by $f(x, y) = (ax)(by)(c- dx- ey)$. Find the maximum value of $f$.

2012 JBMO ShortLists, 4

Tags: inequalities
Solve the following equation for $x , y , z \in \mathbb{N}$ : \[\left (1+ \frac{x}{y+z} \right )^2+\left (1+ \frac{y}{z+x} \right )^2+\left (1+ \frac{z}{x+y} \right )^2=\frac{27}{4}\]

2016 Estonia Team Selection Test, 9

Let $n$ be a positive integer such that there exists a positive integer that is less than $\sqrt{n}$ and does not divide $n$. Let $(a_1, . . . , a_n)$ be an arbitrary permutation of $1, . . . , n$. Let $a_{i1} < . . . < a_{ik}$ be its maximal increasing subsequence and let $a_{j1} > . . . > a_{jl}$ be its maximal decreasing subsequence. Prove that tuples $(a_{i1}, . . . , a_{ik})$ and $(a_{j1}, . . . , a_{jl} )$ altogether contain at least one number that does not divide $n$.

2004 Greece National Olympiad, 1

Find the greatest value of $M$ $\in \mathbb{R}$ such that the following inequality is true $\forall$ $x, y, z$ $\in \mathbb{R}$ $x^4+y^4+z^4+xyz(x+y+z)\geq M(xy+yz+zx)^2$.

2023 Auckland Mathematical Olympiad, 10

Find the maximum of the expression $$||...||x_1 - x_2|- x_3| -... | - x_{2023}|,$$ where $x_1,x_2,..., x_{2023}$ are distinct natural numbers between $1$ and $2023$.

2008 IMO, 2

[b](a)[/b] Prove that \[\frac {x^{2}}{\left(x \minus{} 1\right)^{2}} \plus{} \frac {y^{2}}{\left(y \minus{} 1\right)^{2}} \plus{} \frac {z^{2}}{\left(z \minus{} 1\right)^{2}} \geq 1\] for all real numbers $x$, $y$, $z$, each different from $1$, and satisfying $xyz=1$. [b](b)[/b] Prove that equality holds above for infinitely many triples of rational numbers $x$, $y$, $z$, each different from $1$, and satisfying $xyz=1$. [i]Author: Walther Janous, Austria[/i]

2004 Nicolae Păun, 4

[b]a)[/b] Show that the solution of the equation $ |z-i|=1 $ in $ \mathbb{C} $ is the set $ \{ 2e^{i\alpha} \sin\alpha |\alpha\in [0,\pi ) \} . $ [b]b)[/b] Let be $ n\ge 1 $ complex numbers $ z_1,z_2,\ldots ,z_n $ that verify the inequalities $$ \left| z_k-i \right|\le 1,\quad\forall k\in\{ 1,2,\ldots ,n \} . $$ Prove that there exists a complex number $ w $ such that $ |w-i|\le 1 $ and $ w^n=z_1z_2\cdots z_n. $ [i]Dan-Ștefan Marinescu[/i]