This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2013 Kosovo National Mathematical Olympiad, 1

Tags: inequalities
Which number is bigger $\sqrt[2012]{2012!}$ or $\sqrt[2013]{2013!}$.

2009 Costa Rica - Final Round, 1

Let $ x$ and $ y$ positive real numbers such that $ (1\plus{}x)(1\plus{}y)\equal{}2$. Show that $ xy\plus{}\frac{1}{xy}\geq\ 6$

2006 Junior Balkan Team Selection Tests - Romania, 2

Prove that for all positive real numbers $a,b,c$ the following inequality holds \[ \left( \frac ab + \frac bc + \frac ca \right)^2 \geq \frac 32 \cdot \left ( \frac{a+b}c + \frac{b+c}a + \frac{c+a} b \right) . \]

2010 National Olympiad First Round, 27

Let $P$ be a polynomial with each root is real and each coefficient is either $1$ or $-1$. The degree of $P$ can be at most ? $ \textbf{(A)}\ 5 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ \text{None} $

2020 Czech and Slovak Olympiad III A, 6

For each positive integer $k$, denote by $P (k)$ the number of all positive integers $4k$-digit numbers which can be composed of the digits $2, 0$ and which are divisible by the number $2 020$. Prove the inequality $$P (k) \ge \binom{2k - 1}{k}^2$$ and determine all $k$ for which equality occurs. (Note: A positive integer cannot begin with a digit of $0$.) (Jaromir Simsa)

2003 Mid-Michigan MO, 10-12

[b]p1.[/b] The length of the first side of a triangle is $1$, the length of the second side is $11$, and the length of the third side is an integer. Find that integer. [b]p2.[/b] Suppose $a, b$, and $c$ are positive numbers such that $a + b + c = 1$. Prove that $ab + ac + bc \le \frac13$. [b]p3.[/b] Prove that $1 +\frac12+\frac13+\frac14+ ... +\frac{1}{100}$ is not an integer. [b]p4.[/b] Find all of the four-digit numbers n such that the last four digits of $n^2$ coincide with the digits of $n$. [b]p5.[/b] (Bonus) Several ants are crawling along a circle with equal constant velocities (not necessarily in the same direction). If two ants collide, both immediately reverse direction and crawl with the same velocity. Prove that, no matter how many ants and what their initial positions are, they will, at some time, all simultaneously return to the initial positions. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2017 Philippine MO, 2

Find all positive real numbers \((a,b,c) \leq 1\) which satisfy \[ \huge \min \Bigg\{ \sqrt{\frac{ab+1}{abc}}\, \sqrt{\frac{bc+1}{abc}}, \sqrt{\frac{ac+1}{abc}} \Bigg \} = \sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}\]

2016 Taiwan TST Round 1, 2

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

2021 Thailand Mathematical Olympiad, 3

Tags: inequalities
Let $a$, $b$, and $c$ be positive real numbers satisfying $ab+bc+ca=abc$. Determine the minimum value of $$a^abc + b^bca + c^cab.$$

2021 Alibaba Global Math Competition, 8

Let $f(z)$ be a holomorphic function in $\{\vert z\vert \le R\}$ ($0<R<\infty$). Define \[M(r,f)=\max_{\vert z\vert=r} \vert f(z)\vert, \quad A(r,f)=\max_{\vert z\vert=r} \text{Re}\{f(z)\}.\] Show that \[M(r,f) \le \frac{2r}{R-r}A(R,f)+\frac{R+r}{R-r} \vert f(0)\vert, \quad \forall 0 \le r<R.\]

2009 Postal Coaching, 3

Let $\Omega$ be an $n$-gon inscribed in the unit circle, with vertices $P_1, P_2, ..., P_n$. (a) Show that there exists a point $P$ on the unit circle such that $PP_1 \cdot PP_2\cdot ... \cdot PP_n \ge 2$. (b) Suppose for each $P$ on the unit circle, the inequality $PP_1 \cdot PP_2\cdot ... \cdot PP_n \le 2$ holds. Prove that $\Omega$ is regular.

2013 Saudi Arabia BMO TST, 6

Let $a, b,c$ be positive real numbers such that $ab + bc + ca = 1$. Prove that $$a\sqrt{b^2 + c^2 + bc} + b\sqrt{c^2 + a^2 + ca} + c\sqrt{a^2 + b^2 + ab} \ge \sqrt3$$

III Soros Olympiad 1996 - 97 (Russia), 11.3

Prove that the equation x^3- x- 3 = 0 has a unique root. Which is greater, the root of this equation or $\sqrt[5]{13}$? (Use of a calculator is prohibited.)

2019 Mediterranean Mathematics Olympiad, 4

Let $P$ be a point in the interior of an equilateral triangle with height $1$, and let $x,y,z$ denote the distances from $P$ to the three sides of the triangle. Prove that \[ x^2+y^2+z^2 ~\ge~ x^3+y^3+z^3 +6xyz \]

2021 China Second Round A1, 3

Let $\{a_n\}$, $\{b_n\}$ be sequences of positive real numbers satisfying $$a_n=\sqrt{\frac{1}{100} \sum\limits_{j=1}^{100} b_{n-j}^2}$$ and $$b_n=\sqrt{\frac{1}{100} \sum\limits_{j=1}^{100} a_{n-j}^2}$$ For all $n\ge 101$. Prove that there exists $m\in \mathbb{N}$ such that $|a_m-b_m|<0.001$ [url=https://zhuanlan.zhihu.com/p/417529866] Link [/url]

2020 Switzerland - Final Round, 8

Let $u_1, u_2, \dots, u_{2019}$ be real numbers satisfying \[u_{1}+u_{2}+\cdots+u_{2019}=0 \quad \text { and } \quad u_{1}^{2}+u_{2}^{2}+\cdots+u_{2019}^{2}=1.\] Let $a=\min \left(u_{1}, u_{2}, \ldots, u_{2019}\right)$ and $b=\max \left(u_{1}, u_{2}, \ldots, u_{2019}\right)$. Prove that \[ a b \leqslant-\frac{1}{2019}. \]

2014 ELMO Shortlist, 1

In a non-obtuse triangle $ABC$, prove that \[ \frac{\sin A \sin B}{\sin C} + \frac{\sin B \sin C}{\sin A} + \frac{\sin C \sin A}{ \sin B} \ge \frac 52. \][i]Proposed by Ryan Alweiss[/i]

2009 Bosnia Herzegovina Team Selection Test, 3

Tags: inequalities
$a_{1},a_{2},\dots,a_{100}$ are real numbers such that:\[ a_{1}\geq a_{2}\geq\dots\geq a_{100}\geq0\] \[ a_{1}^{2}+a_{2}^{2}\geq100\] \[ a_{3}^{2}+a_{4}^{2}+\dots+a_{100}^{2}\geq100\] What is the minimum value of sum $a_{1}+a_{2}+\dots+a_{100}.$

2018 Estonia Team Selection Test, 3

Tags: sum , min , max , algebra , inequalities
Given a real number $c$ and an integer $m, m \ge 2$. Real numbers $x_1, x_2,... , x_m$ satisfy the conditions $x_1 + x_2 +...+ x_m = 0$ and $\frac{x^2_1 + x^2_2 + ...+ x^2_m}{m}= c$. Find max $(x_1, x_2,..., x_m)$ if it is known to be as small as possible.

1986 Polish MO Finals, 1

A square of side $1$ is covered with $m^2$ rectangles. Show that there is a rectangle with perimeter at least $\frac{4}{m}$.

2006 Estonia National Olympiad, 1

Tags: inequalities
Find the greatest possible value of $ sin(cos x) \plus{} cos(sin x)$ and determine all real numbers x, for which this value is achieved.

1979 Vietnam National Olympiad, 1

Show that for all $x > 1$ there is a triangle with sides, $x^4 + x^3 + 2x^2 + x + 1, 2x^3 + x^2 + 2x + 1, x^4 - 1.$

2005 Iran Team Selection Test, 1

Tags: inequalities
Suppose that $ a_1$, $ a_2$, ..., $ a_n$ are positive real numbers such that $ a_1 \leq a_2 \leq \dots \leq a_n$. Let \[ {{a_1 \plus{} a_2 \plus{} \dots \plus{} a_n} \over n} \equal{} m; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{a_1^2 \plus{} a_2^2 \plus{} \dots \plus{} a_n^2} \over n} \equal{} 1. \] Suppose that, for some $ i$, we know $ a_i \leq m$. Prove that: \[ n \minus{} i \geq n \left(m \minus{} a_i\right)^2 \]

2021 Science ON all problems, 4

Consider positive real numbers $x,y,z$. Prove the inequality $$\frac 1x+\frac 1y+\frac 1z+\frac{9}{x+y+z}\ge 3\left (\left (\frac{1}{2x+y}+\frac{1}{x+2y}\right )+\left (\frac{1}{2y+z}+\frac{1}{y+2z}\right )+\left (\frac{1}{2z+x}+\frac{1}{x+2z}\right )\right ).$$ [i] (Vlad Robu \& Sergiu Novac)[/i]

2009 Mexico National Olympiad, 3

Tags: inequalities
Let $a$, $b$, and $c$ be positive numbers satisfying $abc=1$. Show that \[\frac{a^3}{a^3+2}+\frac{b^3}{b^3+2}+\frac{c^3}{c^3+2}\ge1\text{ and }\frac1{a^3+2}+\frac1{b^3+2}+\frac1{c^3+2}\le1\]