This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2008 Turkey MO (2nd round), 3

Tags: inequalities
Let a.b.c be positive reals such that their sum is 1. Prove that $ \frac{a^{2}b^{2}}{c^{3}(a^{2}\minus{}ab\plus{}b^{2})}\plus{}\frac{b^{2}c^{2}}{a^{3}(b^{2}\minus{}bc\plus{}c^{2})}\plus{}\frac{a^{2}c^{2}}{b^{3}(a^{2}\minus{}ac\plus{}c^{2})}\geq \frac{3}{ab\plus{}bc\plus{}ac}$

2011 Today's Calculation Of Integral, 697

Find the volume of the solid of the domain expressed by the inequality $x^2-x\leq y\leq x$, generated by a rotation about the line $y=x.$

2004 USAMO, 1

Let $ABCD$ be a quadrilateral circumscribed about a circle, whose interior and exterior angles are at least 60 degrees. Prove that \[ \frac{1}{3}|AB^3 - AD^3| \le |BC^3 - CD^3| \le 3|AB^3 - AD^3|. \] When does equality hold?

2025 Romania EGMO TST, P1

The sequence of real numbers $a_0,a_1,a_2,\ldots$ is defined recursively by \[a_0=-1,\qquad\sum_{k=0}^n\dfrac{a_{n-k}}{k+1}=0\quad\text{for}\quad n\geq 1.\]Show that $ a_{n} > 0$ for all $ n\geq 1$. [i]Proposed by Mariusz Skalba, Poland[/i]

2012 Gulf Math Olympiad, 2

Prove that if $a, b, c$ are positive real numbers, then the least possible value of \[6a^3 + 9b^3 + 32c^3 + \frac{1}{4abc}\] is $6$. For which values of $a, b$ and $c$ is equality attained?

2011 IberoAmerican, 2

Let $x_1,\ldots ,x_n$ be positive real numbers. Show that there exist $a_1,\ldots ,a_n\in\{-1,1\}$ such that: \[a_1x_1^2+a_2x_2^2+\ldots +a_nx_n^2\ge (a_1x_1+a_2x_2+\ldots + a_n x_n)^2\]

2013 ELMO Shortlist, 9

Let $a, b, c$ be positive reals, and let $\sqrt[2013]{\frac{3}{a^{2013}+b^{2013}+c^{2013}}}=P$. Prove that \[\prod_{\text{cyc}}\left(\frac{(2P+\frac{1}{2a+b})(2P+\frac{1}{a+2b})}{(2P+\frac{1}{a+b+c})^2}\right)\ge \prod_{\text{cyc}}\left(\frac{(P+\frac{1}{4a+b+c})(P+\frac{1}{3b+3c})}{(P+\frac{1}{3a+2b+c})(P+\frac{1}{3a+b+2c})}\right).\][i]Proposed by David Stoner[/i]

2014 Indonesia MO Shortlist, A4

Prove that for every real positive number $a, b, c$ with $1 \le a, b, c \le 8$ the inequality $$\frac{a+b+c}{5}\le \sqrt[3]{abc}$$

1964 Swedish Mathematical Competition, 5

$a_1, a_2, ... , a_n$ are constants such that $f(x) = 1 + a_1 cos x + a_2 cos 2x + ...+ a_n cos nx \ge 0$ for all $x$. We seek estimates of $a_1$. If $n = 2$, find the smallest and largest possible values of $a_1$. Find corresponding estimates for other values of $n$.

2019 NMTC Junior, 7

The perimeter of $\triangle ABC$ is $2$ and it's sides are $BC=a, CA=b,AB=c$. Prove that $$abc+\frac{1}{27}\ge ab+bc+ca-1\ge abc. $$

2015 Switzerland Team Selection Test, 2

Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that \[ \min \left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc. \]

2012 May Olympiad, 2

The vertices of two regular octagons are numbered from $1$ to $8$, in some order, which may vary between both octagons (each octagon must have all numbers from $1$ to $8$). After this, one octagon is placed on top of the other so that every vertex from one octagon touches a vertex from the other. Then, the numbers of the vertices which are in contact are multiplied (i.e., if vertex $A$ has a number $x$ and is on top of vertex $A'$ that has a number $y$, then $x$ and $y$ are multiplied), and the $8$ products are then added. Prove that, for any order in which the vertices may have been numbered, it is always possible to place one octagon on top of the other so that the final sum is at least $162$. Note: the octagons can be rotated.

2007 China Western Mathematical Olympiad, 3

Let $ a,b,c$ be real numbers such that $ a\plus{}b\plus{}c\equal{}3$. Prove that \[\frac{1}{5a^2\minus{}4a\plus{}11}\plus{}\frac{1}{5b^2\minus{}4b\plus{}11}\plus{}\frac{1}{5c^2\minus{}4c\plus{}11}\leq\frac{1}{4}\]

2019 Jozsef Wildt International Math Competition, W. 67

Denote $T$ the Toricelli point of the triangle $ABC$. Prove that $$AB^2 \times BC^2 \times CA^2 \geq 3(TA^2\times TB + TB^2 \times TC + TC^2 \times TA)(TA\times TB^2 + TB \times TC^2 + TC \times TA^2)$$

I Soros Olympiad 1994-95 (Rus + Ukr), 11.1

Prove that for real $x\ge 1$, holds the inequality $$\frac{2^x +3^x }{3^x +4^x} \le \frac57$$

2008 South East Mathematical Olympiad, 1

Tags: inequalities
Let $\lambda$ be a positive real number. Inequality $|\lambda xy+yz|\le \dfrac{\sqrt5}{2}$ holds for arbitrary real numbers $x, y, z$ satisfying $x^2+y^2+z^2=1$. Find the maximal value of $\lambda$.

2007 IberoAmerican, 5

Let's say a positive integer $ n$ is [i]atresvido[/i] if the set of its divisors (including 1 and $ n$) can be split in in 3 subsets such that the sum of the elements of each is the same. Determine the least number of divisors an atresvido number can have.

2017 239 Open Mathematical Olympiad, 7

Find the greatest possible value of $s>0$, such that for any positive real numbers $a,b,c$, $$(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})^2 \geq s(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}).$$

2016 China Team Selection Test, 1

Let $n$ be an integer greater than $1$, $\alpha$ is a real, $0<\alpha < 2$, $a_1,\ldots ,a_n,c_1,\ldots ,c_n$ are all positive numbers. For $y>0$, let $$f(y)=\left(\sum_{a_i\le y} c_ia_i^2\right)^{\frac{1}{2}}+\left(\sum_{a_i>y} c_ia_i^{\alpha} \right)^{\frac{1}{\alpha}}.$$ If positive number $x$ satisfies $x\ge f(y)$ (for some $y$), prove that $f(x)\le 8^{\frac{1}{\alpha}}\cdot x$.

2004 AMC 10, 15

Tags: inequalities
Given that $ \minus{} 4\le x\le \minus{} 2$ and $ 2\le y\le 4$, what is the largest possible value of $ (x \plus{} y)/x$? $ \textbf{(A)}\ \minus{}\!1\qquad \textbf{(B)}\ \minus{}\!\frac {1}{2}\qquad \textbf{(C)}\ 0\qquad \textbf{(D)}\ \frac {1}{2}\qquad \textbf{(E)}\ 1$

2011 Today's Calculation Of Integral, 699

Find the volume of the part bounded by $z=x+y,\ z=x^2+y^2$ in the $xyz$ space.

2018 Danube Mathematical Competition, 1

Suppose we have a necklace of $n$ beads. Each bead is labeled with an integer and the sum of all these labels is $n - 1$. Prove that we can cut the necklace to form a string, whose consecutive labels $x_1,x_2,...,x_n$ satisfy $\sum_{i=1}^{k} x_i \le k - 1$ for any $k = 1,...,n$

1969 Canada National Olympiad, 2

Determine which of the two numbers $\sqrt{c+1}-\sqrt{c}$, $\sqrt{c}-\sqrt{c-1}$ is greater for any $c\ge 1$.

2007 iTest Tournament of Champions, 4

Tags: inequalities
Find the smallest positive integer $k$ such that \[(16a^2 + 36b^2 + 81c^2)(81a^2 + 36b^2 + 16c^2) < k(a^2 + b^2 + c^2)^2,\] for some ordered triple of positive integers $(a,b,c)$.

2007 IMO Shortlist, 6

Tags: inequalities
Let $ a_1, a_2, \ldots, a_{100}$ be nonnegative real numbers such that $ a^2_1 \plus{} a^2_2 \plus{} \ldots \plus{} a^2_{100} \equal{} 1.$ Prove that \[ a^2_1 \cdot a_2 \plus{} a^2_2 \cdot a_3 \plus{} \ldots \plus{} a^2_{100} \cdot a_1 < \frac {12}{25}. \] [i]Author: Marcin Kuzma, Poland[/i]