This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 325

2007 Estonia Team Selection Test, 2

Let $D$ be the foot of the altitude of triangle $ABC$ drawn from vertex $A$. Let $E$ and $F$ be points symmetric to $D$ w.r.t. lines $AB$ and $AC$, respectively. Let $R_1$ and $R_2$ be the circumradii of triangles $BDE$ and $CDF$, respectively, and let $r_1$ and $r_2$ be the inradii of the same triangles. Prove that $|S_{ABD} - S_{ACD}| > |R_1r_1 - R_2r_2|$

1999 Bulgaria National Olympiad, 3

The vertices of a triangle have integer coordinates and one of its sides is of length $\sqrt{n}$, where $n$ is a square-free natural number. Prove that the ratio of the circumradius and the inradius is an irrational number.

2019 Yasinsky Geometry Olympiad, p5

In the triangle $ABC$ it is known that $BC = 5, AC - AB = 3$. Prove that $r <2 <r_a$ . (here $r$ is the radius of the circle inscribed in the triangle $ABC$, $r_a$ is the radius of an exscribed circle that touches the sides of $BC$). (Mykola Moroz)

2012 Hanoi Open Mathematics Competitions, 14

[b]Q14.[/b] Let be given a trinagle $ABC$ with $\angle A=90^o$ and the bisectrices of angles $B$ and $C$ meet at $I$. Suppose that $IH$ is perpendicular to $BC$ ($H$ belongs to $BC$). If $HB=5 \text{cm}, \; HC=8 \text{cm}$, compute the area of $\triangle ABC$.

1982 AMC 12/AHSME, 10

In the adjoining diagram, $BO$ bisects $\angle CBA$, $CO$ bisects $\angle ACB$, and $MN$ is parallel to $BC$. If $AB=12$, $BC=24$, and $AC=18$, then the perimeter of $\triangle AMN$ is [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair B=origin, C=(24,0), A=intersectionpoints(Circle(B,12), Circle(C,18))[0], O=incenter(A,B,C), M=intersectionpoint(A--B, O--O+40*dir(180)), N=intersectionpoint(A--C, O--O+40*dir(0)); draw(B--M--O--B--C--O--N--C^^N--A--M); label("$A$", A, dir(90)); label("$B$", B, dir(O--B)); label("$C$", C, dir(O--C)); label("$M$", M, dir(90)*dir(B--A)); label("$N$", N, dir(90)*dir(A--C)); label("$O$", O, dir(90));[/asy] $\textbf {(A) } 30 \qquad \textbf {(B) } 33 \qquad \textbf {(C) } 36 \qquad \textbf {(D) } 39 \qquad \textbf {(E) } 42$

2015 Rioplatense Mathematical Olympiad, Level 3, 6

Let $A B C$ be an acut-angles triangle of incenter $I$, circumcenter $O$ and inradius $r.$ Let $\omega$ be the inscribed circle of the triangle $A B C$. $A_1$ is the point of $\omega$ such that $A IA_1O$ is a convex trapezoid of bases $A O$ and $IA_1$. Let $\omega_1$ be the circle of radius $r$ which goes through $A_1$, tangent to the line $A B$ and is different from $\omega$ . Let $\omega_2$ be the circle of radius $r$ which goes through $A_1$, is tangent to the line $A C$ and is different from $\omega$ . Circumferences $\omega_1$ and $\omega_2$ they are cut at points $A_1$ and $A_2$. Similarly are defined points $B_2$ and $C_2$. Prove that the lines $A A_2, B B_2$ and $CC2$ they are concurrent.

Kvant 2021, M2635

In the triangle $ABC$, the lengths of the sides $BC, CA$ and $AB$ are $a,b$ and $c{}$ respectively. Several segments are drawn from the vertex $C{}$, which cut the triangle $ABC$ into several triangles. Find the smallest number $M{}$ for which, with each such cut, the sum of the radii of the circles inscribed in triangles does not exceed $M{}$. [i]Porposed by O. Titov[/i]

2006 Oral Moscow Geometry Olympiad, 3

On the sides $AB, BC$ and $AC$ of the triangle $ABC$, points $C', A'$ and $B'$ are selected, respectively, so that the angle $A'C'B'$ is right. Prove that the segment $A'B'$ is longer than the diameter of the inscribed circle of the triangle $ABC$. (M. Volchkevich)

2006 Harvard-MIT Mathematics Tournament, 6

A circle of radius $t$ is tangent to the hypotenuse, the incircle, and one leg of an isosceles right triangle with inradius $r=1+\sin \frac{\pi}{8}$. Find $rt$.

2004 USAMO, 1

Let $ABCD$ be a quadrilateral circumscribed about a circle, whose interior and exterior angles are at least 60 degrees. Prove that \[ \frac{1}{3}|AB^3 - AD^3| \le |BC^3 - CD^3| \le 3|AB^3 - AD^3|. \] When does equality hold?

2013 ELMO Shortlist, 1

Let $ABC$ be a triangle with incenter $I$. Let $U$, $V$ and $W$ be the intersections of the angle bisectors of angles $A$, $B$, and $C$ with the incircle, so that $V$ lies between $B$ and $I$, and similarly with $U$ and $W$. Let $X$, $Y$, and $Z$ be the points of tangency of the incircle of triangle $ABC$ with $BC$, $AC$, and $AB$, respectively. Let triangle $UVW$ be the [i]David Yang triangle[/i] of $ABC$ and let $XYZ$ be the [i]Scott Wu triangle[/i] of $ABC$. Prove that the David Yang and Scott Wu triangles of a triangle are congruent if and only if $ABC$ is equilateral. [i]Proposed by Owen Goff[/i]

2017 Harvard-MIT Mathematics Tournament, 8

Let $ABC$ be a triangle with circumradius $R=17$ and inradius $r=7$. Find the maximum possible value of $\sin \frac{A}{2}$.

2006 Sharygin Geometry Olympiad, 8

The segment $AB$ divides the square into two parts, in each of which a circle can be inscribed. The radii of these circles are equal to $r_1$ and $r_2$ respectively, where $r_1> r_2$. Find the length of $AB$.

1988 IMO Shortlist, 3

The triangle $ ABC$ is inscribed in a circle. The interior bisectors of the angles $ A,B$ and $ C$ meet the circle again at $ A', B'$ and $ C'$ respectively. Prove that the area of triangle $ A'B'C'$ is greater than or equal to the area of triangle $ ABC.$

1996 India Regional Mathematical Olympiad, 1

The sides of a triangle are three consecutive integers and its inradius is $4$. Find the circumradius.

2005 Iran MO (3rd Round), 3

Prove that in acute-angled traingle ABC if $r$ is inradius and $R$ is radius of circumcircle then: \[a^2+b^2+c^2\geq 4(R+r)^2\]

2003 National Olympiad First Round, 9

Tags: inradius , geometry
How many integer triangles are there with inradius $1$? $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{Infinite} $

Kyiv City MO Juniors Round2 2010+ geometry, 2019.9.31

A circle $k$ of radius $r$ is inscribed in $\vartriangle ABC$, tangent to the circle $k$, which are parallel respectively to the sides $AB, BC$ and $CA$ intersect the other sides of $\vartriangle ABC$ at points $M, N; P, Q$ and $L, T$ ($P, T \in AB$, $L, N \in BC$ and $M, Q\in AC$). Denote by $r_1,r_2,r_3$ the radii of inscribed circles in triangles $MNC, PQA$ and $LTB$. Prove that $r_1+r_2+r_3=r$.

1925 Eotvos Mathematical Competition, 3

Let $r$ be the radius of the inscribed circle of a right triangle $ABC$. Show that $r$ is less than half of either leg and less than one fourth of the hypotenuse.

2005 Germany Team Selection Test, 3

Let $ABC$ be a triangle with orthocenter $H$, incenter $I$ and centroid $S$, and let $d$ be the diameter of the circumcircle of triangle $ABC$. Prove the inequality \[9\cdot HS^2+4\left(AH\cdot AI+BH\cdot BI+CH\cdot CI\right)\geq 3d^2,\] and determine when equality holds.

2011 Postal Coaching, 1

Let $I$ be the incentre of a triangle $ABC$ and $\Gamma_a$ be the excircle opposite $A$ touching $BC$ at $D$. If $ID$ meets $\Gamma_a$ again at $S$, prove that $DS$ bisects $\angle BSC$.

2010 Korea - Final Round, 1

Given an arbitrary triangle $ ABC$, denote by $ P,Q,R$ the intersections of the incircle with sides $ BC, CA, AB$ respectively. Let the area of triangle $ ABC$ be $ T$, and its perimeter $ L$. Prove that the inequality \[\left(\frac {AB}{PQ}\right)^3 \plus{}\left(\frac {BC}{QR}\right)^3 \plus{}\left(\frac {CA}{RP}\right)^3 \geq \frac {2}{\sqrt {3}} \cdot \frac {L^2}{T}\] holds.

2009 India IMO Training Camp, 10

Tags: geometry , inradius
For a certain triangle all of its altitudes are integers whose sum is less than 20. If its Inradius is also an integer Find all possible values of area of the triangle.

2017 Germany, Landesrunde - Grade 11/12, 5

In a right-angled triangle let $r$ be the inradius and $s_a,s_b$ be the lengths of the medians of the legs $a,b$. Prove the inequality \[ \frac{r^2}{s_a^2+s_b^2} \leq \frac{3-2 \sqrt2}{5}. \]

2012 Sharygin Geometry Olympiad, 6

Point $C_{1}$ of hypothenuse $AC$ of a right-angled triangle $ABC$ is such that $BC = CC_{1}$. Point $C_{2}$ on cathetus $AB$ is such that $AC_{2} = AC_{1}$; point $A_{2}$ is defined similarly. Find angle $AMC$, where $M$ is the midpoint of $A_{2}C_{2}$.