This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 325

2002 Bulgaria National Olympiad, 2

Consider the orthogonal projections of the vertices $A$, $B$ and $C$ of triangle $ABC$ on external bisectors of $ \angle ACB$, $ \angle BAC$ and $ \angle ABC$, respectively. Prove that if $d$ is the diameter of the circumcircle of the triangle, which is formed by the feet of projections, while $r$ and $p$ are the inradius and the semiperimeter of triangle $ABC$, prove that $r^2+p^2=d^2$ [i]Proposed by Alexander Ivanov[/i]

1983 National High School Mathematics League, 11

For a regular hexahedron and a regular octahedron, all their faces are regular triangles, whose lengths of each side are $a$. Their inradius are $r_1,r_2$. $\frac{r_1}{r_2}=\frac{m}{n}, \gcd(m,n)=1$. Then $mn=$________.

2008 AMC 12/AHSME, 20

Triangle $ ABC$ has $ AC\equal{}3$, $ BC\equal{}4$, and $ AB\equal{}5$. Point $ D$ is on $ \overline{AB}$, and $ \overline{CD}$ bisects the right angle. The inscribed circles of $ \triangle ADC$ and $ \triangle BCD$ have radii $ r_a$ and $ r_b$, respectively. What is $ r_a/r_b$? $ \textbf{(A)}\ \frac{1}{28}\left(10\minus{}\sqrt{2}\right) \qquad \textbf{(B)}\ \frac{3}{56}\left(10\minus{}\sqrt{2}\right) \qquad \textbf{(C)}\ \frac{1}{14}\left(10\minus{}\sqrt{2}\right) \qquad \textbf{(D)}\ \frac{5}{56}\left(10\minus{}\sqrt{2}\right) \\ \textbf{(E)}\ \frac{3}{28}\left(10\minus{}\sqrt{2}\right)$

2010 USAJMO, 6

Let $ABC$ be a triangle with $\angle A = 90^{\circ}$. Points $D$ and $E$ lie on sides $AC$ and $AB$, respectively, such that $\angle ABD = \angle DBC$ and $\angle ACE = \angle ECB$. Segments $BD$ and $CE$ meet at $I$. Determine whether or not it is possible for segments $AB$, $AC$, $BI$, $ID$, $CI$, $IE$ to all have integer lengths.

2013 Online Math Open Problems, 21

Let $ABC$ be a triangle with $AB = 5$, $AC = 8$, and $BC = 7$. Let $D$ be on side $AC$ such that $AD = 5$ and $CD = 3$. Let $I$ be the incenter of triangle $ABC$ and $E$ be the intersection of the perpendicular bisectors of $\overline{ID}$ and $\overline{BC}$. Suppose $DE = \frac{a\sqrt{b}}{c}$ where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. Find $a+b+c$. [i]Proposed by Ray Li[/i]

2007 Turkey MO (2nd round), 2

Let $ABC$ be a triangle with $\angle B=90$. The incircle of $ABC$ touches the side $BC$ at $D$. The incenters of triangles $ABD$ and $ADC$ are $X$ and $Z$ , respectively. The lines $XZ$ and $AD$ are intersecting at the point $K$. $XZ$ and circumcircle of $ABC$ are intersecting at $U$ and $V$. Let $M$ be the midpoint of line segment $[UV]$ . $AD$ intersects the circumcircle of $ABC$ at $Y$ other than $A$. Prove that $|CY|=2|MK|$ .

1993 IMO Shortlist, 4

Given a triangle $ABC$, let $D$ and $E$ be points on the side $BC$ such that $\angle BAD = \angle CAE$. If $M$ and $N$ are, respectively, the points of tangency of the incircles of the triangles $ABD$ and $ACE$ with the line $BC$, then show that \[\frac{1}{MB}+\frac{1}{MD}= \frac{1}{NC}+\frac{1}{NE}. \]

2020-21 KVS IOQM India, 22

Let $ABC$ be a triangle with $\angle BAC = 90^o$ and $D$ be the point on the side $BC$ such that $AD \perp BC$. Let$ r, r_1$, and $r_2$ be the inradii of triangles $ABC, ABD$, and $ACD$, respectively. If $r, r_1$, and $r_2$ are positive integers and one of them is $5$, find the largest possible value of $r+r_1+ r_2$.

2006 China National Olympiad, 4

In a right angled-triangle $ABC$, $\angle{ACB} = 90^o$. Its incircle $O$ meets $BC$, $AC$, $AB$ at $D$,$E$,$F$ respectively. $AD$ cuts $O$ at $P$. If $\angle{BPC} = 90^o$, prove $AE + AP = PD$.

2016 Sharygin Geometry Olympiad, 3

Assume that the two triangles $ABC$ and $A'B'C'$ have the common incircle and the common circumcircle. Let a point $P$ lie inside both the triangles. Prove that the sum of the distances from $P$ to the sidelines of triangle $ABC$ is equal to the sum of distances from $P$ to the sidelines of triangle $A'B'C'$.

II Soros Olympiad 1995 - 96 (Russia), 10.7

Tags: line , geometry , inradius
Three straight lines $\ell_1$, $\ell_2$ and $\ell_3$, forming a triangle, divide the plane into $7$ parts. Each of the points $M_1$, $M_2$ and $M_3$ lies in one of the angles, vertical to some angle of the triangle. The distance from $M_1$ to straight lines $\ell_1$, $\ell_2$ and $\ell_3$ are equal to $7,3$ and $1$ respectively The distance from $M_2$ to the same lines are $4$, $1$ and $3$ respectively. For $M_3$ these distances are $3$, $5$ and $2$. What is the radius of the circle inscribed in the triangle? [hide=second sentence in Russian]Каждая из точек М_1, М_2 и М_з лежит в одном из углов, вертикальном по отношению к какому-то углу треугольника.[/hide]

2001 India IMO Training Camp, 1

Let $ABCD$ be a rectangle, and let $\omega$ be a circular arc passing through the points $A$ and $C$. Let $\omega_{1}$ be the circle tangent to the lines $CD$ and $DA$ and to the circle $\omega$, and lying completely inside the rectangle $ABCD$. Similiarly let $\omega_{2}$ be the circle tangent to the lines $AB$ and $BC$ and to the circle $\omega$, and lying completely inside the rectangle $ABCD$. Denote by $r_{1}$ and $r_{2}$ the radii of the circles $\omega_{1}$ and $\omega_{2}$, respectively, and by $r$ the inradius of triangle $ABC$. [b](a)[/b] Prove that $r_{1}+r_{2}=2r$. [b](b)[/b] Prove that one of the two common internal tangents of the two circles $\omega_{1}$ and $\omega_{2}$ is parallel to the line $AC$ and has the length $\left|AB-AC\right|$.

2009 AIME Problems, 12

In right $ \triangle ABC$ with hypotenuse $ \overline{AB}$, $ AC \equal{} 12$, $ BC \equal{} 35$, and $ \overline{CD}$ is the altitude to $ \overline{AB}$. Let $ \omega$ be the circle having $ \overline{CD}$ as a diameter. Let $ I$ be a point outside $ \triangle ABC$ such that $ \overline{AI}$ and $ \overline{BI}$ are both tangent to circle $ \omega$. The ratio of the perimeter of $ \triangle ABI$ to the length $ AB$ can be expressed in the form $ \displaystyle\frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m\plus{}n$.

2010 Stanford Mathematics Tournament, 2

Find the radius of a circle inscribed in a triangle with side lengths $4$, $5$, and $6$

2000 IMO Shortlist, 5

Prove that there exist infinitely many positive integers $ n$ such that $ p \equal{} nr,$ where $ p$ and $ r$ are respectively the semiperimeter and the inradius of a triangle with integer side lengths.

2012 National Olympiad First Round, 5

Tags: geometry , inradius
$\triangle ABC$ is given with $|AB|=7, |BC|=12$, and $|CA|=13$. Let $D$ be a point on $[BC]$ such that $|BD|=5$. Let $r_1$ and $r_2$ be the inradii of $\triangle ABD$ and $\triangle ACD$, respectively. What is $r_1/r_2$? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ \frac{13}{12} \qquad \textbf{(C)}\ \frac{7}{5} \qquad \textbf{(D)}\ \frac{3}{2} \qquad \textbf{(E)}\ \text{None}$

2007 Estonia Math Open Senior Contests, 10

Consider triangles whose each side length squared is a rational number. Is it true that (a) the square of the circumradius of every such triangle is rational; (b) the square of the inradius of every such triangle is rational?

2009 Princeton University Math Competition, 2

Tags: geometry , inradius
A triangle has sides of lengths 5, 6, 7. What is 60 times the square of the radius of the inscribed circle?

1992 IberoAmerican, 3

Let $ABC$ be an equilateral triangle of sidelength 2 and let $\omega$ be its incircle. a) Show that for every point $P$ on $\omega$ the sum of the squares of its distances to $A$, $B$, $C$ is 5. b) Show that for every point $P$ on $\omega$ it is possible to construct a triangle of sidelengths $AP$, $BP$, $CP$. Also, the area of such triangle is $\frac{\sqrt{3}}{4}$.

2005 Romania Team Selection Test, 2

Let $ABC$ be a triangle, and let $D$, $E$, $F$ be 3 points on the sides $BC$, $CA$ and $AB$ respectively, such that the inradii of the triangles $AEF$, $BDF$ and $CDE$ are equal with half of the inradius of the triangle $ABC$. Prove that $D$, $E$, $F$ are the midpoints of the sides of the triangle $ABC$.

2005 France Team Selection Test, 2

Two right angled triangles are given, such that the incircle of the first one is equal to the circumcircle of the second one. Let $S$ (respectively $S'$) be the area of the first triangle (respectively of the second triangle). Prove that $\frac{S}{S'}\geq 3+2\sqrt{2}$.

1994 IMO Shortlist, 3

A circle $ C$ has two parallel tangents $ L'$ and$ L"$. A circle $ C'$ touches $ L'$ at $ A$ and $ C$ at $ X$. A circle $ C"$ touches $ L"$ at $ B$, $ C$ at $ Y$ and $ C'$ at $ Z$. The lines $ AY$ and $ BX$ meet at $ Q$. Show that $ Q$ is the circumcenter of $ XYZ$

1970 All Soviet Union Mathematical Olympiad, 138

Given triangle $ABC$, midpoint $M$ of the side $[BC]$, the centre $O$ of the inscribed circle. The line $(MO)$ crosses the height $AH$ in the point $E$. Prove that the distance $|AE|$ equals the inscribed circle radius.

2009 Iran Team Selection Test, 1

Let $ ABC$ be a triangle and $ A'$ , $ B'$ and $ C'$ lie on $ BC$ , $ CA$ and $ AB$ respectively such that the incenter of $ A'B'C'$ and $ ABC$ are coincide and the inradius of $ A'B'C'$ is half of inradius of $ ABC$ . Prove that $ ABC$ is equilateral .

2005 Harvard-MIT Mathematics Tournament, 8

Let $T$ be a triangle with side lengths $26$, $51$, and $73$. Let $S$ be the set of points inside $T$ which do not lie within a distance of $5$ of any side of $T$. Find the area of $S$.