Found problems: 1687
1973 Putnam, B4
(a) On $[0, 1]$, let $f(x)$ have a continuous derivative satisfying $0 <f'(x) \leq1$. Also suppose that $f(0) = 0.$ Prove that
$$ \left( \int_{0}^{1} f(x)\; dx \right)^{2} \geq \int_{0}^{1} f(x)^{3}\; dx.$$
(b) Show an example in which equality occurs.
2005 Balkan MO, 2
Find all primes $p$ such that $p^2-p+1$ is a perfect cube.
2007 Today's Calculation Of Integral, 186
For $a>0,$ find $\lim_{a\to\infty}a^{-\left(\frac{3}{2}+n\right) }\int_{0}^{a}x^{n}\sqrt{1+x}\ dx\ (n=1,\ 2,\ \cdots).$
2005 Rioplatense Mathematical Olympiad, Level 3, 3
Let $k$ be a positive integer. Show that for all $n>k$ there exist convex figures $F_{1},\ldots, F_{n}$ and $F$ such that there doesn't exist a subset of $k$ elements from $F_{1},..., F_{n}$ and $F$ is covered for this elements, but $F$ is covered for every subset of $k+1$ elements from $F_{1}, F_{2},....., F_{n}$.
2009 Today's Calculation Of Integral, 417
The functions $ f(x) ,\ g(x)$ satify that $ f(x) \equal{} \frac {x^3}{2} \plus{} 1 \minus{} x\int_0^x g(t)\ dt,\ g(x) \equal{} x \minus{} \int_0^1 f(t)\ dt$.
Let $ l_1,\ l_2$ be the tangent lines of the curve $ y \equal{} f(x)$, which pass through the point $ (a,\ g(a))$ on the curve $ y \equal{} g(x)$.
Find the minimum area of the figure bounded by the tangent tlines $ l_1,\ l_2$ and the curve $ y \equal{} f(x)$ .
2014 BMT Spring, 20
A certain type of Bessel function has the form $I(x) = \frac{1}{\pi} \int_0^{\pi}e^{x \cos \theta} d\theta$ for all real $x$. Evaluate $\int_0^{\infty} x I(2x) e^{-x^2}dx$.
2011 Today's Calculation Of Integral, 677
Let $a,\ b$ be positive real numbers with $a<b$. Define the definite integrals $I_1,\ I_2,\ I_3$ by
$I_1=\int_a^b \sin\ (x^2)\ dx,\ I_2=\int_a^b \frac{\cos\ (x^2)}{x^2}\ dx,\ I_3=\int_a^b \frac{\sin\ (x^2)}{x^4}\ dx$.
(1) Find the value of $I_1+\frac 12I_2$ in terms of $a,\ b$.
(2) Find the value of $I_2-\frac 32I_3$ in terms of $a,\ b$.
(3) For a positive integer $n$, define $K_n=\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}} \sin\ (x^2)\ dx+\frac 34\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}}\frac{\sin\ (x^2)}{x^4}\ dx$.
Find the value of $\lim_{n\to\infty} 2n\pi \sqrt{2n\pi} K_n$.
[i]2011 Tokyo University of Science entrance exam/Information Sciences, Applied Chemistry, Mechanical Enginerring, Civil Enginerring[/i]
1997 Putnam, 3
Evaluate the following :
\[ \int_{0}^{\infty}\left(x-\frac{x^3}{2}+\frac{x^5}{2\cdot 4}-\frac{x^7}{2\cdot 4\cdot 6}+\cdots \right)\;\left(1+\frac{x^2}{2^2}+\frac{x^4}{2^2\cdot 4^2}+\frac{x^6}{2^2\cdot 4^2\cdot 6^2}+\cdots \right)\,\mathrm{d}x \]
2007 Today's Calculation Of Integral, 168
Prove that $\sum_{n=1}^{\infty}\int_{\frac{1}{n+1}}^{\frac{1}{n}}{\left|\frac{1}{x}\sin \frac{\pi}{x}\right| dx}$ diverge for $x>0.$
2007 Today's Calculation Of Integral, 252
Compare $ \displaystyle f(\theta) \equal{} \int_0^1 (x \plus{} \sin \theta)^2\ dx$ and $ \ g(\theta) \equal{} \int_0^1 (x \plus{} \cos \theta)^2\ dx$ for $ 0\leqq \theta \leqq 2\pi .$
2012 Today's Calculation Of Integral, 808
For a constant $c$, a sequence $a_n$ is defined by $a_n=\int_c^1 nx^{n-1}\left(\ln \left(\frac{1}{x}\right)\right)^n dx\ (n=1,\ 2,\ 3,\ \cdots).$
Find $\lim_{n\to\infty} a_n$.
PEN Q Problems, 9
For non-negative integers $n$ and $k$, let $P_{n, k}(x)$ denote the rational function \[\frac{(x^{n}-1)(x^{n}-x) \cdots (x^{n}-x^{k-1})}{(x^{k}-1)(x^{k}-x) \cdots (x^{k}-x^{k-1})}.\] Show that $P_{n, k}(x)$ is actually a polynomial for all $n, k \in \mathbb{N}$.
2010 Today's Calculation Of Integral, 588
Evaluate $ \int_0^{\frac{\pi}{2}} e^{xe^x}\{(x\plus{}1)e^x(\cos x\plus{}\sin x)\plus{}\cos x\minus{}\sin x\}dx$.
2023 CIIM, 1
Determine all the pairs of positive real numbers $(a, b)$ with $a < b$ such that the following series $$\sum_{k=1}^{\infty} \int_a^b\{x\}^k dx =\int_a^b\{x\} dx + \int_a^b\{x\}^2 dx + \int_a^b\{x\}^3 dx + \cdots$$ is convergent and determine its value in function of $a$ and $b$.
[b]Note: [/b] $\{x\} = x - \lfloor x \rfloor$ denotes the fractional part of $x$.
ICMC 4, 3
Let $\displaystyle s_n=\int_0^1 \text{sin}^n(nx) \,dx$.
(a) Prove that $s_n \leq \dfrac 2n$ for all odd $n$.
(b) Find all the limit points of the sequence $s_1, s_2, s_3, \dots$.
[i]Proposed by Cristi Calin[/i]
Today's calculation of integrals, 886
Find the functions $f(x),\ g(x)$ such that
$f(x)=e^{x}\sin x+\int_0^{\pi} ug(u)\ du$
$g(x)=e^{x}\cos x+\int_0^{\pi} uf(u)\ du$
2012 USAMO, 6
For integer $n\geq2$, let $x_1, x_2, \ldots, x_n$ be real numbers satisfying \[x_1+x_2+\ldots+x_n=0, \qquad \text{and}\qquad x_1^2+x_2^2+\ldots+x_n^2=1.\]For each subset $A\subseteq\{1, 2, \ldots, n\}$, define\[S_A=\sum_{i\in A}x_i.\](If $A$ is the empty set, then $S_A=0$.)
Prove that for any positive number $\lambda$, the number of sets $A$ satisfying $S_A\geq\lambda$ is at most $2^{n-3}/\lambda^2$. For which choices of $x_1, x_2, \ldots, x_n, \lambda$ does equality hold?
2013 Today's Calculation Of Integral, 878
A cubic function $f(x)$ satisfies the equation $\sin 3t=f(\sin t)$ for all real numbers $t$.
Evaluate $\int_0^1 f(x)^2\sqrt{1-x^2}\ dx$.
2006 Czech-Polish-Slovak Match, 5
Find the number of sequences $(a_n)_{n=1}^\infty$ of integers satisfying $a_n \ne -1$ and
\[a_{n+2} =\frac{a_n + 2006}{a_{n+1} + 1}\]
for each $n \in \mathbb{N}$.
2009 Today's Calculation Of Integral, 418
(1) 2009 Kansai University entrance exam
Calculate $ \int \frac{e^{\minus{}2x}}{1\plus{}e^{\minus{}x}}\ dx$.
(2) 2009 Rikkyo University entrance exam/Science
Evaluate $ \int_0^ 1 \frac{2x^3}{1\plus{}x^2}\ dx$.
2008 Moldova National Olympiad, 12.6
Find $ \lim_{n\to\infty}a_n$ where $ (a_n)_{n\ge1}$ is defined by $ a_n\equal{}\frac1{\sqrt{n^2\plus{}8n\minus{}1}}\plus{}\frac1{\sqrt{n^2\plus{}16n\minus{}1}}\plus{}\frac1{\sqrt{n^2\plus{}24n\minus{}1}}\plus{}\ldots\plus{}\frac1{\sqrt{9n^2\minus{}1}}$.
2010 Today's Calculation Of Integral, 572
For integer $ n,\ a_n$ is difined by $ a_n\equal{}\int_0^{\frac{\pi}{4}} (\cos x)^ndx$.
(1) Find $ a_{\minus{}2},\ a_{\minus{}1}$.
(2) Find the relation of $ a_n$ and $ a_{n\minus{}2}$.
(3) Prove that $ a_{2n}\equal{}b_n\plus{}\pi c_n$ for some rational number $ b_n,\ c_n$, then find $ c_n$ for $ n<0$.
2010 Contests, 3
[b](a)[/b]Prove that every pentagon with integral coordinates has at least two vertices , whose respective coordinates have the same parity.
[b](b)[/b]What is the smallest area possible of pentagons with integral coordinates.
Albanian National Mathematical Olympiad 2010---12 GRADE Question 3.
2009 Today's Calculation Of Integral, 400
(1) A function is defined $ f(x) \equal{} \ln (x \plus{} \sqrt {1 \plus{} x^2})$ for $ x\geq 0$. Find $ f'(x)$.
(2) Find the arc length of the part $ 0\leq \theta \leq \pi$ for the curve defined by the polar equation: $ r \equal{} \theta\ (\theta \geq 0)$.
Remark:
[color=blue]You may not directly use the integral formula of[/color] $ \frac {1}{\sqrt {1 \plus{} x^2}},\ \sqrt{1 \plus{} x^2}$ here.
2011 Today's Calculation Of Integral, 759
Given a regular tetrahedron $PQRS$ with side length $d$. Find the volume of the solid generated by a rotation around the line passing through $P$ and the midpoint $M$ of $QR$.