This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2009 Today's Calculation Of Integral, 502

(1) For $ 0 < x < 1$, prove that $ (\sqrt {2} \minus{} 1)x \plus{} 1 < \sqrt {x \plus{} 1} < \sqrt {2}.$ (2) Find $ \lim_{a\rightarrow 1 \minus{} 0} \frac {\int_a^1 x\sqrt {1 \minus{} x^2}\ dx}{(1 \minus{} a)^{\frac 32}}$.

2005 IMC, 5

5) f twice cont diff, $|f''(x)+2xf'(x)+(x^{2}+1)f(x)|\leq 1$. prove $\lim_{x\rightarrow +\infty} f(x) = 0$

2000 Putnam, 4

Show that the improper integral \[ \lim_{B \rightarrow \infty} \displaystyle\int_{0}^{B} \sin (x) \sin (x^2) dx \] converges.

1985 AMC 12/AHSME, 21

How many integers $ x$ satisfy the equation \[ (x^2 \minus{} x \minus{} 1)^{x \plus{} 2} \equal{} 1 \]$ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ \text{none of these}$

2011 AMC 12/AHSME, 19

A lattice point in an $xy$-coordinate system is any point $(x,y)$ where both $x$ and $y$ are integers. The graph of $y=mx+2$ passes through no lattice point with $0<x \le 100$ for all $m$ such that $\frac{1}{2}<m<a$. What is the maximum possible value of $a$? $ \textbf{(A)}\ \frac{51}{101} \qquad \textbf{(B)}\ \frac{50}{99} \qquad \textbf{(C)}\ \frac{51}{100} \qquad \textbf{(D)}\ \frac{52}{101} \qquad \textbf{(E)}\ \frac{13}{25} $

1979 Swedish Mathematical Competition, 4

$f(x)$ is continuous on the interval $[0, \pi]$ and satisfies \[ \int\limits_0^\pi f(x)dx=0, \qquad \int\limits_0^\pi f(x)\cos x dx=0 \] Show that $f(x)$ has at least two zeros in the interval $(0, \pi)$.

2010 Putnam, A6

Let $f:[0,\infty)\to\mathbb{R}$ be a strictly decreasing continuous function such that $\lim_{x\to\infty}f(x)=0.$ Prove that $\displaystyle\int_0^{\infty}\frac{f(x)-f(x+1)}{f(x)}\,dx$ diverges.

2012 Pre-Preparation Course Examination, 3

Consider the set $\mathbb A=\{f\in C^1([-1,1]):f(-1)=-1,f(1)=1\}$. Prove that there is no function in this function space that gives us the minimum of $S=\int_{-1}^1x^2f'(x)^2dx$. What is the infimum of $S$ for the functions of this space?

2007 AIME Problems, 7

Let \[N= \sum_{k=1}^{1000}k(\lceil \log_{\sqrt{2}}k\rceil-\lfloor \log_{\sqrt{2}}k \rfloor).\] Find the remainder when N is divided by 1000. (Here $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to x, and $\lceil x \rceil$ denotes the least integer that is greater than or equal to x.)

2010 Today's Calculation Of Integral, 655

Find the area of the region of the points such that the total of three tangent lines can be drawn to two parabolas $y=x-x^2,\ y=a(x-x^2)\ (a\geq 2)$ in such a way that there existed the points of tangency in the first quadrant.

2012 Today's Calculation Of Integral, 787

Take two points $A\ (-1,\ 0),\ B\ (1,\ 0)$ on the $xy$-plane. Let $F$ be the figure by which the whole points $P$ on the plane satisfies $\frac{\pi}{4}\leq \angle{APB}\leq \pi$ and the figure formed by $A,\ B$. Answer the following questions: (1) Illustrate $F$. (2) Find the volume of the solid generated by a rotation of $F$ around the $x$-axis.

2010 Today's Calculation Of Integral, 619

Consider a function $f(x)=\frac{\sin x}{9+16\sin ^ 2 x}\ \left(0\leq x\leq \frac{\pi}{2}\right).$ Let $a$ be the value of $x$ for which $f(x)$ is maximized. Evaluate $\int_a^{\frac{\pi}{2}} f(x)\ dx.$ [i]2010 Saitama University entrance exam/Mathematics[/i] Last Edited

Today's calculation of integrals, 894

Let $a$ be non zero real number. Find the area of the figure enclosed by the line $y=ax$, the curve $y=x\ln (x+1).$

2005 IMC, 4

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a three times differentiable function. Prove that there exists $w \in [-1,1]$ such that \[ \frac{f'''(w)}{6} = \frac{f(1)}{2}-\frac{f(-1)}{2}-f'(0). \]

2010 Today's Calculation Of Integral, 608

For $a>0$, find the minimum value of $\int_0^1 \frac{ax^2+(a^2+2a)x+2a^2-2a+4}{(x+a)(x+2)}dx.$ 2010 Gakusyuin University entrance exam/Science

2010 Today's Calculation Of Integral, 532

For a curve $ C: y \equal{} x\sqrt {9 \minus{} x^2}\ (x\geq 0)$, (1) Find the maximum value of the function. (2) Find the area of the figure bounded by the curve $ C$ and the $ x$-axis. (3) Find the volume of the solid by revolution of the figure in (2) around the $ y$-axis. Please find the volume without using cylindrical shells for my students. Last Edited.

Today's calculation of integrals, 863

For $0<t\leq 1$, let $F(t)=\frac{1}{t}\int_0^{\frac{\pi}{2}t} |\cos 2x|\ dx.$ (1) Find $\lim_{t\rightarrow 0} F(t).$ (2) Find the range of $t$ such that $F(t)\geq 1.$

2024 SEEMOUS, P3

For every $n\geq 1$ define $x_n$ by $$x_n=\int_0^1 \ln(1+x+x^2+\dots +x^n)\cdot\ln\frac{1}{1-x}\mathrm dx.$$ a) Show that $x_n$ is finite for every $n\geq 1$ and $\lim_{n\rightarrow\infty}x_n=2$. b) Calculate $\lim_{n\rightarrow\infty}\frac{n}{\ln n}(2-x_n)$.

1979 AMC 12/AHSME, 11

Find a positive integral solution to the equation \[\frac{1+3+5+\dots+(2n-1)}{2+4+6+\dots+2n}=\frac{115}{116}\] $\textbf{(A) }110\qquad\textbf{(B) }115\qquad\textbf{(C) }116\qquad\textbf{(D) }231\qquad\textbf{(E) }\text{The equation has no positive integral solutions.}$

PEN S Problems, 38

The function $\mu: \mathbb{N}\to \mathbb{C}$ is defined by \[\mu(n) = \sum^{}_{k \in R_{n}}\left( \cos \frac{2k\pi}{n}+i \sin \frac{2k\pi}{n}\right),\] where $R_{n}=\{ k \in \mathbb{N}\vert 1 \le k \le n, \gcd(k, n)=1 \}$. Show that $\mu(n)$ is an integer for all positive integer $n$.

2006 Princeton University Math Competition, 5

Find the greatest integer less than the number $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{1000000}}$

2006 IMC, 5

Let $a, b, c, d$ three strictly positive real numbers such that \[a^{2}+b^{2}+c^{2}=d^{2}+e^{2},\] \[a^{4}+b^{4}+c^{4}=d^{4}+e^{4}.\] Compare \[a^{3}+b^{3}+c^{3}\] with \[d^{3}+e^{3},\]

1981 Vietnam National Olympiad, 2

Consider the polynomials \[f(p) = p^{12} - p^{11} + 3p^{10} + 11p^3 - p^2 + 23p + 30;\] \[g(p) = p^3 + 2p + m.\] Find all integral values of $m$ for which $f$ is divisible by $g$.

2010 Today's Calculation Of Integral, 533

Let $ C$ be the circle with radius 1 centered on the origin. Fix the endpoint of the string with length $ 2\pi$ on the point $ A(1,\ 0)$ and put the other end point $ P$ on the point $ P_0(1,\ 2\pi)$. From this situation, when we twist the string around $ C$ by moving the point $ P$ in anti clockwise with the string streched tightly, find the length of the curve that the point $ P$ draws from sarting point $ P_0$ to reaching point $ A$.

PEN M Problems, 13

The sequence $\{x_{n}\}$ is defined by \[x_{0}\in [0, 1], \; x_{n+1}=1-\vert 1-2 x_{n}\vert.\] Prove that the sequence is periodic if and only if $x_{0}$ is irrational.