This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2024 VJIMC, 1

Let $f:\mathbb{R} \to \mathbb{R}$ be a continuously differentiable function. Prove that \[\left\vert f(1)-\int_0^1 f(x) dx\right\vert \le \frac{1}{2} \max_{x \in [0,1]} \vert f'(x)\vert.\]

2009 Today's Calculation Of Integral, 397

In $ xy$ plane, find the minimum volume of the solid by rotating the region boubded by the parabola $ y \equal{} x^2 \plus{} ax \plus{} b$ passing through the point $ (1,\ \minus{} 1)$ and the $ x$ axis about the $ x$ axis

2012 Today's Calculation Of Integral, 847

Consider a right-angled triangle with $AB=1,\ AC=\sqrt{3},\ \angle{BAC}=\frac{\pi}{2}.$ Let $P_1,\ P_2,\ \cdots\cdots,\ P_{n-1}\ (n\geq 2)$ be the points which are closest from $A$, in this order and obtained by dividing $n$ equally parts of the line segment $AB$. Denote by $A=P_0,\ B=P_n$, answer the questions as below. (1) Find the inradius of $\triangle{P_kCP_{k+1}}\ (0\leq k\leq n-1)$. (2) Denote by $S_n$ the total sum of the area of the incircle for $\triangle{P_kCP_{k+1}}\ (0\leq k\leq n-1)$. Let $I_n=\frac{1}{n}\sum_{k=0}^{n-1} \frac{1}{3+\left(\frac{k}{n}\right)^2}$, show that $nS_n\leq \frac {3\pi}4I_n$, then find the limit $\lim_{n\to\infty} I_n$. (3) Find the limit $\lim_{n\to\infty} nS_n$.

2011 Today's Calculation Of Integral, 705

The parametric equations of a curve are given by $x = 2(1+\cos t)\cos t,\ y =2(1+\cos t)\sin t\ (0\leq t\leq 2\pi)$. (1) Find the maximum and minimum values of $x$. (2) Find the volume of the solid enclosed by the figure of revolution about the $x$-axis.

Today's calculation of integrals, 872

Let $n$ be a positive integer. (1) For a positive integer $k$ such that $1\leq k\leq n$, Show that : \[\int_{\frac{k-1}{2n}\pi}^{\frac{k}{2n}\pi} \sin 2nt\cos t\ dt=(-1)^{k+1}\frac{2n}{4n^2-1}(\cos \frac{k}{2n}\pi +\cos \frac{k-1}{2n}\pi).\] (2) Find the area $S_n$ of the part expressed by a parameterized curve $C_n: x=\sin t,\ y=\sin 2nt\ (0\leq t\leq \pi).$ If necessary, you may use ${\sum_{k=1}^{n-1} \cos \frac{k}{2n}\pi =\frac 12(\frac{1}{\tan \frac{\pi}{4n}}-1})\ (n\geq 2).$ (3) Find $\lim_{n\to\infty} S_n.$

2012 Today's Calculation Of Integral, 833

Let $f(x)=\int_0^{x} e^{t} (\cos t+\sin t)\ dt,\ g(x)=\int_0^{x} e^{t} (\cos t-\sin t)\ dt.$ For a real number $a$, find $\sum_{n=1}^{\infty} \frac{e^{2a}}{\{f^{(n)}(a)\}^2+\{g^{(n)}(a)\}^2}.$

2007 Stanford Mathematics Tournament, 15

Evaluate $\int_{0}^{\infty}\frac{\tan^{-1}(\pi x)-\tan^{-1}x}{x}dx$

2009 Today's Calculation Of Integral, 466

For $ n \equal{} 1,\ 2,\ 3,\ \cdots$, let $ (p_n,\ q_n)\ (p_n > 0,\ q_n > 0)$ be the point of intersection of $ y \equal{} \ln (nx)$ and $ \left(x \minus{} \frac {1}{n}\right)^2 \plus{} y^2 \equal{} 1$. (1) Show that $ 1 \minus{} q_n^2\leq \frac {(e \minus{} 1)^2}{n^2}$ to find $ \lim_{n\to\infty} q_n$. (2) Find $ \lim_{n\to\infty} n\int_{\frac {1}{n}}^{p_n} \ln (nx)\ dx$.

1987 Vietnam National Olympiad, 2

Let $ f : [0, \plus{}\infty) \to \mathbb R$ be a differentiable function. Suppose that $ \left|f(x)\right| \le 5$ and $ f(x)f'(x) \ge \sin x$ for all $ x \ge 0$. Prove that there exists $ \lim_{x\to\plus{}\infty}f(x)$.

1974 AMC 12/AHSME, 10

What is the smallest integral value of $k$ such that \[ 2x(kx-4)-x^2+6=0 \] has no real roots? $ \textbf{(A)}\ -1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 5 $

2012 Today's Calculation Of Integral, 815

Prove that : $\left|\sum_{i=0}^n \left(1-\pi \sin \frac{i\pi}{4n}\cos \frac{i\pi}{4n}\right)\right|<1.$

2005 Today's Calculation Of Integral, 66

Find the minimum value of $\int_0^{\frac{\pi}{2}} |\cos x -a|\sin x \ dx$

2002 National High School Mathematics League, 8

Consider the expanded form of $\left(x+\frac{1}{2\sqrt[4]{x}}\right)^n$, put all items in number (from high power to low power). If the coefficients of the first three items are arithmetic sequence, then the number of items with an integral power is________.

2012 Today's Calculation Of Integral, 843

Let $f(x)$ be a continuous function such that $\int_0^1 f(x)\ dx=1.$ Find $f(x)$ for which $\int_0^1 (x^2+x+1)f(x)^2dx$ is minimized.

2010 Today's Calculation Of Integral, 612

For $f(x)=\frac{1}{x}\ (x>0)$, prove the following inequality. \[f\left(t+\frac 12 \right)\leq \int_t^{t+1} f(x)\ dx\leq \frac 16\left\{f(t)+4f\left(t+\frac 12\right)+f(t+1)\right\}\]

2014 Paenza, 6

(a) Show that if $f:[-1,1]\to \mathbb{R}$ is a convex and $C^2$ function such that $f(1),f(-1)\geq 0$, then: \[\min_{x\in[-1,1]} \{f(x)\} \geq - \int_{-1}^1 f''\] (b) Let $B\subset \mathbb{R}^2$ the closed ball with center $0$ and radius $1$. Show that if $f: B \to \mathbb{R}$ is a convex and $C^2$ function and $f\geq 0$ in $\partial B$, then: \[f(0)\geq -\frac{1}{\sqrt{\pi}} \left( \int_{B} (f_{xx}f_{yy}-f_{xy}^2) \right)^{1/2}\]

1995 AIME Problems, 10

What is the largest positive integer that is not the sum of a positive integral multiple of 42 and a positive composite integer?

2013 Today's Calculation Of Integral, 879

Evaluate the integrals as follows. (1) $\int \frac{x^2}{2-x}\ dx$ (2) $\int \sqrt[3]{x^5+x^3}\ dx$ (3) $\int_0^1 (1-x)\cos \pi x\ dx$

2013 Today's Calculation Of Integral, 870

Consider the ellipse $E: 3x^2+y^2=3$ and the hyperbola $H: xy=\frac 34.$ (1) Find all points of intersection of $E$ and $H$. (2) Find the area of the region expressed by the system of inequality \[\left\{ \begin{array}{ll} 3x^2+y^2\leq 3 &\quad \\ xy\geq \frac 34 , &\quad \end{array} \right.\]

2009 Today's Calculation Of Integral, 478

Evaluate $ \int_0^{\frac{\pi}{4}} \{(x\sqrt{\sin x}\plus{}2\sqrt{\cos x})\sqrt{\tan x}\plus{}(x\sqrt{\cos x}\minus{}2\sqrt{\sin x})\sqrt{\cot x}\}\ dx.$

2012 Today's Calculation Of Integral, 829

Let $a$ be a positive constant. Find the value of $\ln a$ such that \[\frac{\int_1^e \ln (ax)\ dx}{\int_1^e x\ dx}=\int_1^e \frac{\ln (ax)}{x}\ dx.\]

1994 Irish Math Olympiad, 1

Let $ x,y$ be positive integers with $ y>3$ and $ x^2\plus{}y^4\equal{}2((x\minus{}6)^2\plus{}(y\plus{}1)^2).$ Prove that: $ x^2\plus{}y^4\equal{}1994.$

1997 Romania National Olympiad, 2

Prove that: $\int_{-1}^1f^2(x)dx\ge \frac 1 2 (\int_{-1}^1f(x)dx)^2 +\frac 3 2(\int_{-1}^1xf(x)dx)^2$ Please give a proof without using even and odd functions. (the oficial proof uses those and seems to be un-natural) :D

2008 Moldova MO 11-12, 2

Find the exact value of $ E\equal{}\displaystyle\int_0^{\frac\pi2}\cos^{1003}x\text{d}x\cdot\int_0^{\frac\pi2}\cos^{1004}x\text{d}x\cdot$.