This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 259

2000 IMO Shortlist, 5

Let $ n \geq 2$ be a positive integer and $ \lambda$ a positive real number. Initially there are $ n$ fleas on a horizontal line, not all at the same point. We define a move as choosing two fleas at some points $ A$ and $ B$, with $ A$ to the left of $ B$, and letting the flea from $ A$ jump over the flea from $ B$ to the point $ C$ so that $ \frac {BC}{AB} \equal{} \lambda$. Determine all values of $ \lambda$ such that, for any point $ M$ on the line and for any initial position of the $ n$ fleas, there exists a sequence of moves that will take them all to the position right of $ M$.

2010 Laurențiu Panaitopol, Tulcea, 3

Let $ R $ be the circumradius of a triangle $ ABC. $ The points $ B,C, $ lie on a circle of radius $ \rho $ that intersects $ AB,AC $ at $ E,D, $ respectively. $ \rho' $ is the circumradius of $ ADE. $ Show that there exists a triangle with sides $ R,\rho ,\rho' , $ and having an angle whose value doesn't depend on $ \rho . $ [i]Laurențiu Panaitopol[/i]

2023 Indonesia TST, 2

Let $n > 3$ be a positive integer. Suppose that $n$ children are arranged in a circle, and $n$ coins are distributed between them (some children may have no coins). At every step, a child with at least 2 coins may give 1 coin to each of their immediate neighbors on the right and left. Determine all initial distributions of the coins from which it is possible that, after a finite number of steps, each child has exactly one coin.

1993 IMO, 6

Let $n > 1$ be an integer. In a circular arrangement of $n$ lamps $L_0, \ldots, L_{n-1},$ each of of which can either ON or OFF, we start with the situation where all lamps are ON, and then carry out a sequence of steps, $Step_0, Step_1, \ldots .$ If $L_{j-1}$ ($j$ is taken mod $n$) is ON then $Step_j$ changes the state of $L_j$ (it goes from ON to OFF or from OFF to ON) but does not change the state of any of the other lamps. If $L_{j-1}$ is OFF then $Step_j$ does not change anything at all. Show that: (i) There is a positive integer $M(n)$ such that after $M(n)$ steps all lamps are ON again, (ii) If $n$ has the form $2^k$ then all the lamps are ON after $n^2-1$ steps, (iii) If $n$ has the form $2^k + 1$ then all lamps are ON after $n^2 - n + 1$ steps.

2021 Science ON all problems, 4

The numbers $\frac 32$, $\frac 43$ and $\frac 65$ are intially written on the blackboard. A move consists of erasing one of the numbers from the blackboard, call it $a$, and replacing it with $bc-b-c+2$, where $b,c$ are the other two numbers currently written on the blackboard. Is it possible that $\frac{1000}{999}$ would eventually appear on the blackboard? What about $\frac{113}{108}$? [i] (Andrei Bâra)[/i]

2009 IberoAmerican Olympiad For University Students, 2

Let $x_1,\cdots, x_n$ be nonzero vectors of a vector space $V$ and $\varphi:V\to V$ be a linear transformation such that $\varphi x_1 = x_1$, $\varphi x_k = x_k - x_{k-1}$ for $k = 2, 3,\ldots,n$. Prove that the vectors $x_1,\ldots,x_n$ are linearly independent.

2013 AMC 10, 4

When counting from $3$ to $201$, $53$ is the $51^{\text{st}}$ number counted. When counting backwards from $201$ to $3$, $53$ is the $n^{\text{th}}$ number counted. What is $n$? $\textbf{(A) }146\qquad \textbf{(B) } 147\qquad\textbf{(C) } 148\qquad\textbf{(D) }149\qquad\textbf{(E) }150$

2017 Greece Team Selection Test, 4

Tags: invariant , algebra
Some positive integers are initially written on a board, where each $2$ of them are different. Each time we can do the following moves: (1) If there are 2 numbers (written in the board) in the form $n, n+1$ we can erase them and write down $n-2$ (2) If there are 2 numbers (written in the board) in the form $n, n+4$ we can erase them and write down $n-1$ After some moves, there might appear negative numbers. Find the maximum value of the integer $c$ such that: Independetly of the starting numbers, each number which appears in any move is greater or equal to $c$

2010 Tournament Of Towns, 5

A needle (a segment) lies on a plane. One can rotate it $45^{\circ}$ round any of its endpoints. Is it possible that after several rotations the needle returns to initial position with the endpoints interchanged?

2009 Miklós Schweitzer, 9

Let $ P\subseteq \mathbb{R}^m$ be a non-empty compact convex set and $ f: P\rightarrow \mathbb{R}_{ \plus{} }$ be a concave function. Prove, that for every $ \xi\in \mathbb{R}^m$ \[ \int_{P}\langle \xi,x \rangle f(x)dx\leq \left[\frac {m \plus{} 1}{m \plus{} 2}\sup_{x\in P}{\langle\xi,x\rangle} \plus{} \frac {1}{m \plus{} 2}\inf_{x\in P}{\langle\xi,x\rangle}\right] \cdot\int_{P}f(x)dx.\]

1992 Vietnam Team Selection Test, 2

Find all pair of positive integers $(x, y)$ satisfying the equation \[x^2 + y^2 - 5 \cdot x \cdot y + 5 = 0.\]

1961 All-Soviet Union Olympiad, 2

Consider a table with one real number in each cell. In one step, one may switch the sign of the numbers in one row or one column simultaneously. Prove that one can obtain a table with non-negative sums in each row and each column.

1994 Vietnam National Olympiad, 1

There are $n+1$ containers arranged in a circle. One container has $n$ stones, the others are empty. A move is to choose two containers $A$ and $B$, take a stone from $A$ and put it in one of the containers adjacent to $B$, and to take a stone from $B$ and put it in one of the containers adjacent to $A$. We can take $A = B$. For which $n$ is it possible by series of moves to end up with one stone in each container except that which originally held $n$ stones.

2011 Vietnam Team Selection Test, 6

Let $n$ be an integer greater than $1.$ $n$ pupils are seated around a round table, each having a certain number of candies (it is possible that some pupils don't have a candy) such that the sum of all the candies they possess is a multiple of $n.$ They exchange their candies as follows: For each student's candies at first, there is at least a student who has more candies than the student sitting to his/her right side, in which case, the student on the right side is given a candy by that student. After a round of exchanging, if there is at least a student who has candies greater than the right side student, then he/she will give a candy to the next student sitting to his/her right side. Prove that after the exchange of candies is completed (ie, when it reaches equilibrium), all students have the same number of candies.

2020 Cono Sur Olympiad, 5

There is a pile with $15$ coins on a table. At each step, Pedro choses one of the piles in the table with $a>1$ coins and divides it in two piles with $b\geq1$ and $c\geq1$ coins and writes in the board the product $abc$. He continues until there are $15$ piles with $1$ coin each. Determine all possible values that the final sum of the numbers in the board can have.

2010 Tournament Of Towns, 3

Each of $999$ numbers placed in a circular way is either $1$ or $-1$. (Both values appear). Consider the total sum of the products of every $10$ consecutive numbers. $(a)$ Find the minimal possible value of this sum. $(b)$ Find the maximal possible value of this sum.

1993 IMO Shortlist, 5

On an infinite chessboard, a solitaire game is played as follows: at the start, we have $n^2$ pieces occupying a square of side $n.$ The only allowed move is to jump over an occupied square to an unoccupied one, and the piece which has been jumped over is removed. For which $n$ can the game end with only one piece remaining on the board?

Kvant 2021, M2651

In a room there are several children and a pile of 1000 sweets. The children come to the pile one after another in some order. Upon reaching the pile each of them divides the current number of sweets in the pile by the number of children in the room, rounds the result if it is not integer, takes the resulting number of sweets from the pile and leaves the room. All the boys round upwards and all the girls round downwards. The process continues until everyone leaves the room. Prove that the total number of sweets received by the boys does not depend on the order in which the children reach the pile. [i]Maxim Didin[/i]

1996 APMO, 1

Let $ABCD$ be a quadrilateral $AB = BC = CD = DA$. Let $MN$ and $PQ$ be two segments perpendicular to the diagonal $BD$ and such that the distance between them is $d > \frac{BD}{2}$, with $M \in AD$, $N \in DC$, $P \in AB$, and $Q \in BC$. Show that the perimeter of hexagon $AMNCQP$ does not depend on the position of $MN$ and $PQ$ so long as the distance between them remains constant.

2003 Romania Team Selection Test, 8

Two circles $\omega_1$ and $\omega_2$ with radii $r_1$ and $r_2$, $r_2>r_1$, are externally tangent. The line $t_1$ is tangent to the circles $\omega_1$ and $\omega_2$ at points $A$ and $D$ respectively. The parallel line $t_2$ to the line $t_1$ is tangent to the circle $\omega_1$ and intersects the circle $\omega_2$ at points $E$ and $F$. The line $t_3$ passing through $D$ intersects the line $t_2$ and the circle $\omega_2$ in $B$ and $C$ respectively, both different of $E$ and $F$ respectively. Prove that the circumcircle of the triangle $ABC$ is tangent to the line $t_1$. [i]Dinu Serbanescu[/i]

2006 Switzerland Team Selection Test, 1

The three roots of $P(x) = x^3 - 2x^2 - x + 1$ are $a>b>c \in \mathbb{R}$. Find the value of $a^2b+b^2c+c^2a$. :D

2012 India IMO Training Camp, 1

The cirumcentre of the cyclic quadrilateral $ABCD$ is $O$. The second intersection point of the circles $ABO$ and $CDO$, other than $O$, is $P$, which lies in the interior of the triangle $DAO$. Choose a point $Q$ on the extension of $OP$ beyond $P$, and a point $R$ on the extension of $OP$ beyond $O$. Prove that $\angle QAP=\angle OBR$ if and only if $\angle PDQ=\angle RCO$.

2014 Bosnia and Herzegovina Junior BMO TST, 4

It is given $5$ numbers $1$, $3$, $5$, $7$, $9$. We get the new $5$ numbers such that we take arbitrary $4$ numbers(out of current $5$ numbers) $a$, $b$, $c$ and $d$ and replace them with $\frac{a+b+c-d}{2}$, $\frac{a+b-c+d}{2}$, $\frac{a-b+c+d}{2}$ and $\frac{-a+b+c+d}{2}$. Can we, with repeated iterations, get numbers: $a)$ $0$, $2$, $4$, $6$ and $8$ $b)$ $3$, $4$, $5$, $6$ and $7$

1966 IMO Longlists, 51

Consider $n$ students with numbers $1, 2, \ldots, n$ standing in the order $1, 2, \ldots, n.$ Upon a command, any of the students either remains on his place or switches his place with another student. (Actually, if student $A$ switches his place with student $B,$ then $B$ cannot switch his place with any other student $C$ any more until the next command comes.) Is it possible to arrange the students in the order $n,1, 2, \ldots, n-1$ after two commands ?

2019 Latvia Baltic Way TST, 5

There are $2019$ students sitting around circular table. Initially each of them have one candy. Teacher is allowed to pick one student, who has at least one can candy, and this student can decide, whether he gives his candy to his neighbour on the right or on the left. Prove that no matter what students teacher picks during the process, students can always ensure that any point of time no student has more than $2$ candies.