This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 259

2010 Germany Team Selection Test, 2

Five identical empty buckets of $2$-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighbouring buckets, empties them to the river and puts them back. Then the next round begins. The Stepmother goal's is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow? [i]Proposed by Gerhard Woeginger, Netherlands[/i]

2004 Romania Team Selection Test, 6

Let $a,b$ be two positive integers, such that $ab\neq 1$. Find all the integer values that $f(a,b)$ can take, where \[ f(a,b) = \frac { a^2+ab+b^2} { ab- 1} . \]

1994 USAMO, 2

The sides of a 99-gon are initially colored so that consecutive sides are red, blue, red, blue, $\,\ldots, \,$ red, blue, yellow. We make a sequence of modifications in the coloring, changing the color of one side at a time to one of the three given colors (red, blue, yellow), under the constraint that no two adjacent sides may be the same color. By making a sequence of such modifications, is it possible to arrive at the coloring in which consecutive sides are red, blue, red, blue, red, blue, $\, \ldots, \,$ red, yellow, blue?

2014 India IMO Training Camp, 3

Starting with the triple $(1007\sqrt{2},2014\sqrt{2},1007\sqrt{14})$, define a sequence of triples $(x_{n},y_{n},z_{n})$ by $x_{n+1}=\sqrt{x_{n}(y_{n}+z_{n}-x_{n})}$ $y_{n+1}=\sqrt{y_{n}(z_{n}+x_{n}-y_{n})}$ $ z_{n+1}=\sqrt{z_{n}(x_{n}+y_{n}-z_{n})}$ for $n\geq 0$.Show that each of the sequences $\langle x_n\rangle _{n\geq 0},\langle y_n\rangle_{n\geq 0},\langle z_n\rangle_{n\geq 0}$ converges to a limit and find these limits.

2015 Tournament of Towns, 5

Several distinct real numbers are written on a blackboard. Peter wants to create an algebraic expression such that among its values there would be these and only these numbers. He may use any real numbers, brackets, signs $+, -, \times$ and a special sign $\pm$. Usage of $\pm$ is equivalent to usage of $+$ and $-$ in all possible combinations. For instance, the expression $5 \pm 1$ results in $\{4, 6\}$, while $(2 \pm 0.5) \pm 0.5$ results in $\{1, 2, 3\}$. Can Peter construct an expression if the numbers on the blackboard are : (a) $1, 2, 4$ ? [i]($2$ points)[/i] (b) any $100$ distinct real numbers ? [i]($6$ points)[/i]

2009 Romanian Master of Mathematics, 4

For a finite set $ X$ of positive integers, let $ \Sigma(X) \equal{} \sum_{x \in X} \arctan \frac{1}{x}.$ Given a finite set $ S$ of positive integers for which $ \Sigma(S) < \frac{\pi}{2},$ show that there exists at least one finite set $ T$ of positive integers for which $ S \subset T$ and $ \Sigma(S) \equal{} \frac{\pi}{2}.$ [i]Kevin Buzzard, United Kingdom[/i]

PEN R Problems, 8

Prove that on a coordinate plane it is impossible to draw a closed broken line such that [list][*] coordinates of each vertex are rational, [*] the length of its every edge is equal to $1$, [*] the line has an odd number of vertices.[/list]

2005 IMO Shortlist, 5

There are $ n$ markers, each with one side white and the other side black. In the beginning, these $ n$ markers are aligned in a row so that their white sides are all up. In each step, if possible, we choose a marker whose white side is up (but not one of the outermost markers), remove it, and reverse the closest marker to the left of it and also reverse the closest marker to the right of it. Prove that, by a finite sequence of such steps, one can achieve a state with only two markers remaining if and only if $ n \minus{} 1$ is not divisible by $ 3$. [i]Proposed by Dusan Dukic, Serbia[/i]

1993 IMO, 3

On an infinite chessboard, a solitaire game is played as follows: at the start, we have $n^2$ pieces occupying a square of side $n.$ The only allowed move is to jump over an occupied square to an unoccupied one, and the piece which has been jumped over is removed. For which $n$ can the game end with only one piece remaining on the board?

2006 District Olympiad, 2

Let $G= \{ A \in \mathcal M_2 \left( \mathbb C \right) \mid |\det A| = 1 \}$ and $H =\{A \in \mathcal M_2 \left( \mathbb C \right) \mid \det A = 1 \}$. Prove that $G$ and $H$ together with the operation of matrix multiplication are two non-isomorphical groups.

2010 Kyiv Mathematical Festival, 4

1) The numbers $1,2,3,\ldots,2010$ are written on the blackboard. Two players in turn erase some two numbers and replace them with one number. The first player replaces numbers $a$ and $b$ with $ab-a-b$ while the second player replaces them with $ab+a+b.$ The game ends when a single number remains on the blackboard. If this number is smaller than $1\cdot2\cdot3\cdot\ldots\cdot2010$ then the first player wins. Otherwise the second player wins. Which of the players has a winning strategy? 2) The numbers $1,2,3,\ldots,2010$ are written on the blackboard. Two players in turn erase some two numbers and replace them with one number. The first player replaces numbers $a$ and $b$ with $ab-a-b+2$ while the second player replaces them with $ab+a+b.$ The game ends when a single number remains on the blackboard. If this number is smaller than $1\cdot2\cdot3\cdot\ldots\cdot2010$ then the first player wins. Otherwise the second player wins. Which of the players has a winning strategy?

2009 IMO Shortlist, 5

Five identical empty buckets of $2$-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighbouring buckets, empties them to the river and puts them back. Then the next round begins. The Stepmother goal's is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow? [i]Proposed by Gerhard Woeginger, Netherlands[/i]

2024 Baltic Way, 3

Positive real numbers $a_1, a_2, \ldots, a_{2024}$ are written on the blackboard. A move consists of choosing two numbers $x$ and $y$ on the blackboard, erasing them and writing the number $\frac{x^2+6xy+y^2}{x+y}$ on the blackboard. After $2023$ moves, only one number $c$ will remain on the blackboard. Prove that \[ c<2024 (a_1+a_2+\ldots+a_{2024}).\]

2008 AMC 12/AHSME, 14

What is the area of the region defined by the inequality $ |3x\minus{}18|\plus{}|2y\plus{}7|\le 3$? $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ \frac{7}{2} \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ \frac{9}{2} \qquad \textbf{(E)}\ 5$

1997 IMO Shortlist, 2

Let $ R_1,R_2, \ldots$ be the family of finite sequences of positive integers defined by the following rules: $ R_1 \equal{} (1),$ and if $ R_{n - 1} \equal{} (x_1, \ldots, x_s),$ then \[ R_n \equal{} (1, 2, \ldots, x_1, 1, 2, \ldots, x_2, \ldots, 1, 2, \ldots, x_s, n).\] For example, $ R_2 \equal{} (1, 2),$ $ R_3 \equal{} (1, 1, 2, 3),$ $ R_4 \equal{} (1, 1, 1, 2, 1, 2, 3, 4).$ Prove that if $ n > 1,$ then the $ k$th term from the left in $ R_n$ is equal to 1 if and only if the $ k$th term from the right in $ R_n$ is different from 1.

1999 Belarusian National Olympiad, 4

A circle is inscribed in the trapezoid [i]ABCD[/i]. Let [i]K, L, M, N[/i] be the points of tangency of this circle with the diagonals [i]AC[/i] and [i]BD[/i], respectively ([i]K[/i] is between [i]A[/i] and [i]L[/i], and [i]M[/i] is between [i]B[/i] and [i]N[/i]). Given that $AK\cdot LC=16$ and $BM\cdot ND=\frac94$, find the radius of the circle. [color=red][Moderator edit: A solution of this problem can be found on http://www.ajorza.org/math/mathfiles/scans/belarus.pdf , page 20 (the statement of the problem is on page 6). The author of the problem is I. Voronovich.][/color]

1998 IMO Shortlist, 7

A solitaire game is played on an $m\times n$ rectangular board, using $mn$ markers which are white on one side and black on the other. Initially, each square of the board contains a marker with its white side up, except for one corner square, which contains a marker with its black side up. In each move, one may take away one marker with its black side up, but must then turn over all markers which are in squares having an edge in common with the square of the removed marker. Determine all pairs $(m,n)$ of positive integers such that all markers can be removed from the board.

2014 Contests, 3

Tags: invariant
The numbers $1,2,\dots,10$ are written on a board. Every minute, one can select three numbers $a$, $b$, $c$ on the board, erase them, and write $\sqrt{a^2+b^2+c^2}$ in their place. This process continues until no more numbers can be erased. What is the largest possible number that can remain on the board at this point? [i]Proposed by Evan Chen[/i]

1997 Austrian-Polish Competition, 3

Numbers $\frac{49}{1}, \frac{49}{2}, ... , \frac{49}{97}$ are writen on a blackboard. Each time, we can replace two numbers (like $a, b$) with $2ab-a-b+1$. After $96$ times doing that prenominate action, one number will be left on the board. Find all the possible values fot that number.

2011 Czech-Polish-Slovak Match, 2

Written on a blackboard are $n$ nonnegative integers whose greatest common divisor is $1$. A [i]move[/i] consists of erasing two numbers $x$ and $y$, where $x\ge y$, on the blackboard and replacing them with the numbers $x-y$ and $2y$. Determine for which original $n$-tuples of numbers on the blackboard is it possible to reach a point, after some number of moves, where $n-1$ of the numbers of the blackboard are zeroes.

2002 Iran MO (3rd Round), 9

Let $ M$ and $ N$ be points on the side $ BC$ of triangle $ ABC$, with the point $ M$ lying on the segment $ BN$, such that $ BM \equal{} CN$. Let $ P$ and $ Q$ be points on the segments $ AN$ and $ AM$, respectively, such that $ \measuredangle PMC \equal{}\measuredangle MAB$ and $ \measuredangle QNB \equal{}\measuredangle NAC$. Prove that $ \measuredangle QBC \equal{}\measuredangle PCB$.

2014 USAMTS Problems, 5:

A finite set $S$ of unit squares is chosen out of a large grid of unit squares. The squares of $S$ are tiled with isosceles right triangles of hypotenuse $2$ so that the triangles do not overlap each other, do not extend past $S$, and all of $S$ is fully covered by the triangles. Additionally, the hypotenuse of each triangle lies along a grid line, and the vertices of the triangles lie at the corners of the squares. Show that the number of triangles must be a multiple of $4$.

2004 Germany Team Selection Test, 3

We attach to the vertices of a regular hexagon the numbers $1$, $0$, $0$, $0$, $0$, $0$. Now, we are allowed to transform the numbers by the following rules: (a) We can add an arbitrary integer to the numbers at two opposite vertices. (b) We can add an arbitrary integer to the numbers at three vertices forming an equilateral triangle. (c) We can subtract an integer $t$ from one of the six numbers and simultaneously add $t$ to the two neighbouring numbers. Can we, just by acting several times according to these rules, get a cyclic permutation of the initial numbers? (I. e., we started with $1$, $0$, $0$, $0$, $0$, $0$; can we now get $0$, $1$, $0$, $0$, $0$, $0$, or $0$, $0$, $1$, $0$, $0$, $0$, or $0$, $0$, $0$, $1$, $0$, $0$, or $0$, $0$, $0$, $0$, $1$, $0$, or $0$, $0$, $0$, $0$, $0$, $1$ ?)

2009 Germany Team Selection Test, 3

Initially, on a board there a positive integer. If board contains the number $x,$ then we may additionally write the numbers $2x+1$ and $\frac{x}{x+2}.$ At some point 2008 is written on the board. Prove, that this number was there from the beginning.

2013 USA TSTST, 9

Let $r$ be a rational number in the interval $[-1,1]$ and let $\theta = \cos^{-1} r$. Call a subset $S$ of the plane [i]good[/i] if $S$ is unchanged upon rotation by $\theta$ around any point of $S$ (in both clockwise and counterclockwise directions). Determine all values of $r$ satisfying the following property: The midpoint of any two points in a good set also lies in the set.