This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 259

2013 AMC 10, 4

When counting from $3$ to $201$, $53$ is the $51^{\text{st}}$ number counted. When counting backwards from $201$ to $3$, $53$ is the $n^{\text{th}}$ number counted. What is $n$? $\textbf{(A) }146\qquad \textbf{(B) } 147\qquad\textbf{(C) } 148\qquad\textbf{(D) }149\qquad\textbf{(E) }150$

2009 IMO Shortlist, 5

Five identical empty buckets of $2$-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighbouring buckets, empties them to the river and puts them back. Then the next round begins. The Stepmother goal's is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow? [i]Proposed by Gerhard Woeginger, Netherlands[/i]

2021 Science ON all problems, 4

The numbers $\frac 32$, $\frac 43$ and $\frac 65$ are intially written on the blackboard. A move consists of erasing one of the numbers from the blackboard, call it $a$, and replacing it with $bc-b-c+2$, where $b,c$ are the other two numbers currently written on the blackboard. Is it possible that $\frac{1000}{999}$ would eventually appear on the blackboard? What about $\frac{113}{108}$? [i] (Andrei Bâra)[/i]

2003 USAMO, 6

At the vertices of a regular hexagon are written six nonnegative integers whose sum is $2003^{2003}$. Bert is allowed to make moves of the following form: he may pick a vertex and replace the number written there by the absolute value of the difference between the numbers written at the two neighboring vertices. Prove that Bert can make a sequence of moves, after which the number 0 appears at all six vertices.

2010 Saint Petersburg Mathematical Olympiad, 7

$200 \times 200$ square is colored in chess order. In one move we can take every $2 \times 3$ rectangle and change color of all its cells. Can we make all cells of square in same color ?

2006 Pre-Preparation Course Examination, 1

Suppose that $X$ is a compact metric space and $T: X\rightarrow X$ is a continous function. Prove that $T$ has a returning point. It means there is a strictly increasing sequence $n_i$ such that $\lim_{k\rightarrow \infty} T^{n_k}(x_0)=x_0$ for some $x_0$.

2007 IMC, 5

For each positive integer $ k$, find the smallest number $ n_{k}$ for which there exist real $ n_{k}\times n_{k}$ matrices $ A_{1}, A_{2}, \ldots, A_{k}$ such that all of the following conditions hold: (1) $ A_{1}^{2}= A_{2}^{2}= \ldots = A_{k}^{2}= 0$, (2) $ A_{i}A_{j}= A_{j}A_{i}$ for all $ 1 \le i, j \le k$, and (3) $ A_{1}A_{2}\ldots A_{k}\ne 0$.

1985 USAMO, 5

Let $a_1,a_2,a_3,\cdots$ be a non-decreasing sequence of positive integers. For $m\ge1$, define $b_m=\min\{n: a_n \ge m\}$, that is, $b_m$ is the minimum value of $n$ such that $a_n\ge m$. If $a_{19}=85$, determine the maximum value of \[a_1+a_2+\cdots+a_{19}+b_1+b_2+\cdots+b_{85}.\]

2011 All-Russian Olympiad, 4

A $2010\times 2010$ board is divided into corner-shaped figures of three cells. Prove that it is possible to mark one cell in each figure such that each row and each column will have the same number of marked cells. [i]I. Bogdanov & O. Podlipsky[/i]

1971 Bundeswettbewerb Mathematik, 1

The numbers $1,2,...,1970$ are written on a board. One is allowed to remove $2$ numbers and to write down their difference instead. When repeated often enough, only one number remains. Show that this number is odd.

2015 Tournament of Towns, 5

Several distinct real numbers are written on a blackboard. Peter wants to create an algebraic expression such that among its values there would be these and only these numbers. He may use any real numbers, brackets, signs $+, -, \times$ and a special sign $\pm$. Usage of $\pm$ is equivalent to usage of $+$ and $-$ in all possible combinations. For instance, the expression $5 \pm 1$ results in $\{4, 6\}$, while $(2 \pm 0.5) \pm 0.5$ results in $\{1, 2, 3\}$. Can Peter construct an expression if the numbers on the blackboard are : (a) $1, 2, 4$ ? [i]($2$ points)[/i] (b) any $100$ distinct real numbers ? [i]($6$ points)[/i]

2010 Germany Team Selection Test, 2

Five identical empty buckets of $2$-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighbouring buckets, empties them to the river and puts them back. Then the next round begins. The Stepmother goal's is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow? [i]Proposed by Gerhard Woeginger, Netherlands[/i]

2002 IberoAmerican, 2

Given any set of $9$ points in the plane such that there is no $3$ of them collinear, show that for each point $P$ of the set, the number of triangles with its vertices on the other $8$ points and that contain $P$ on its interior is even.

2011 Vietnam Team Selection Test, 6

Let $n$ be an integer greater than $1.$ $n$ pupils are seated around a round table, each having a certain number of candies (it is possible that some pupils don't have a candy) such that the sum of all the candies they possess is a multiple of $n.$ They exchange their candies as follows: For each student's candies at first, there is at least a student who has more candies than the student sitting to his/her right side, in which case, the student on the right side is given a candy by that student. After a round of exchanging, if there is at least a student who has candies greater than the right side student, then he/she will give a candy to the next student sitting to his/her right side. Prove that after the exchange of candies is completed (ie, when it reaches equilibrium), all students have the same number of candies.

2025 All-Russian Olympiad, 9.6

Petya chooses $100$ pairwise distinct positive numbers less than $1$ and arranges them in a circle. In one operation, he may take three consecutive numbers \( a, b, c \) (in this order) and replace \( b \) with \( a - b + c \). What is the greatest value of \( k \) such that Petya could initially choose the numbers and perform several operations so that \( k \) of the resulting numbers are integers? \\

2001 IMO Shortlist, 7

A pile of $n$ pebbles is placed in a vertical column. This configuration is modified according to the following rules. A pebble can be moved if it is at the top of a column which contains at least two more pebbles than the column immediately to its right. (If there are no pebbles to the right, think of this as a column with 0 pebbles.) At each stage, choose a pebble from among those that can be moved (if there are any) and place it at the top of the column to its right. If no pebbles can be moved, the configuration is called a [i]final configuration[/i]. For each $n$, show that, no matter what choices are made at each stage, the final configuration obtained is unique. Describe that configuration in terms of $n$. [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=119189]IMO ShortList 2001, combinatorics problem 7, alternative[/url]

2001 Bulgaria National Olympiad, 3

Given a permutation $(a_{1}, a_{1},...,a_{n})$ of the numbers $1, 2,...,n$ one may interchange any two consecutive "blocks" - that is, one may transform ($a_{1}, a_{2},...,a_{i}$,$\underbrace {a_{i+1},... a_{i+p},}_{A} $ $ \underbrace{a_{i+p+1},...,a_{i+q},}_{B}...,a_{n}) $ into $ (a_{1}, a_{2},...,a_{i},$ $ \underbrace {a_{i+p+1},...,a_{i+q},}_{B} $ $ \underbrace {a_{i+1},... a_{i+p}}_{A}$$,...,a_{n}) $ by interchanging the "blocks" $A$ and $B$. Find the least number of such changes which are needed to transform $(n, n-1,...,1)$ into $(1,2,...,n)$

1986 IMO Longlists, 38

To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers $x,y,z$ respectively, and $y<0$, then the following operation is allowed: $x,y,z$ are replaced by $x+y,-y,z+y$ respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.

PEN R Problems, 8

Prove that on a coordinate plane it is impossible to draw a closed broken line such that [list][*] coordinates of each vertex are rational, [*] the length of its every edge is equal to $1$, [*] the line has an odd number of vertices.[/list]

2010 Tournament Of Towns, 3

Each of $999$ numbers placed in a circular way is either $1$ or $-1$. (Both values appear). Consider the total sum of the products of every $10$ consecutive numbers. $(a)$ Find the minimal possible value of this sum. $(b)$ Find the maximal possible value of this sum.

Russian TST 2015, P1

We have $2^m$ sheets of paper, with the number $1$ written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are $a$ and $b$, then we erase these numbers and write the number $a + b$ on both sheets. Prove that after $m2^{m -1}$ steps, the sum of the numbers on all the sheets is at least $4^m$ . [i]Proposed by Abbas Mehrabian, Iran[/i]

1997 Singapore Team Selection Test, 1

Four integers are marked on a circle. On each step we simultaneously replace each number by the difference between this number and next number on the circle, moving in a clockwise direction; that is, the numbers $ a,b,c,d$ are replaced by $ a\minus{}b,b\minus{}c,c\minus{}d,d\minus{}a.$ Is it possible after 1996 such to have numbers $ a,b,c,d$ such the numbers $ |bc\minus{}ad|, |ac \minus{} bd|, |ab \minus{} cd|$ are primes?

2022 Brazil National Olympiad, 1

A single player game has the following rules: initially, there are $10$ piles of stones with $1,2,...,10$ stones, respectively. A movement consists on making one of the following operations: [b]i)[/b] to choose $2$ piles, both of them with at least $2$ stones, combine them and then add $2$ stones to the new pile; [b]ii)[/b] to choose a pile with at least $4$ stones, remove $2$ stones from it, and then split it into two piles with amount of piles to be chosen by the player. The game continues until is not possible to make an operation. Show that the number of piles with one stone in the end of the game is always the same, no matter how the movements are made.

2009 Germany Team Selection Test, 3

Initially, on a board there a positive integer. If board contains the number $x,$ then we may additionally write the numbers $2x+1$ and $\frac{x}{x+2}.$ At some point 2008 is written on the board. Prove, that this number was there from the beginning.

2014 Cono Sur Olympiad, 1

Numbers $1$ through $2014$ are written on a board. A valid operation is to erase two numbers $a$ and $b$ on the board and replace them with the greatest common divisor and the least common multiple of $a$ and $b$. Prove that, no matter how many operations are made, the sum of all the numbers that remain on the board is always larger than $2014$ $\times$ $\sqrt[2014]{2014!}$