This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 124

2011 AMC 12/AHSME, 10

Rectangle $ABCD$ has $AB=6$ and $BC=3$. Point $M$ is chosen on side $AB$ so that $\angle AMD = \angle CMD$. What is the degree measure of $\angle AMD$? $ \textbf{(A)}\ 15 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 45 \qquad \textbf{(D)}\ 60 \qquad \textbf{(E)}\ 75 $

2025 Sharygin Geometry Olympiad, 3

An excircle centered at $I_{A}$ touches the side $BC$ of a triangle $ABC$ at point $D$. Prove that the pedal circles of $D$ with respect to the triangles $ABI_{A}$ and $ACI_{A}$ are congruent. Proposed by:K.Belsky

2005 Postal Coaching, 10

On the sides $AB$ and $BC$ of triangle $ABC$, points $K$ and $M$ are chosen such that the quadrilaterals $AKMC$ and $KBMN$ are cyclic , where $N = AM \cap CK$ . If these quads have the same circumradii, find $\angle ABC$

2011 Uzbekistan National Olympiad, 3

Given an acute triangle $ABC$ with altituties AD and BE. O circumcinter of $ABC$.If o lies on the segment DE then find the value of $sinAsinBcosC$

1985 IMO Longlists, 39

Given a triangle $ABC$ and external points $X, Y$ , and $Z$ such that $\angle BAZ = \angle CAY , \angle CBX = \angle ABZ$, and $\angle ACY = \angle BCX$, prove that $AX,BY$ , and $CZ$ are concurrent.

2013 CentroAmerican, 2

Let $ABC$ be an acute triangle and let $\Gamma$ be its circumcircle. The bisector of $\angle{A}$ intersects $BC$ at $D$, $\Gamma$ at $K$ (different from $A$), and the line through $B$ tangent to $\Gamma$ at $X$. Show that $K$ is the midpoint of $AX$ if and only if $\frac{AD}{DC}=\sqrt{2}$.

2008 Moldova National Olympiad, 9.3

From the vertex $ A$ of the equilateral triangle $ ABC$ a line is drown that intercepts the segment $ [BC]$ in the point $ E$. The point $ M \in (AE$ is such that $ M$ external to $ ABC$, $ \angle AMB \equal{} 20 ^\circ$ and $ \angle AMC \equal{} 30 ^ \circ$. What is the measure of the angle $ \angle MAB$?

2010 Polish MO Finals, 3

$ABCD$ is a parallelogram in which angle $DAB$ is acute. Points $A, P, B, D$ lie on one circle in exactly this order. Lines $AP$ and $CD$ intersect in $Q$. Point $O$ is the circumcenter of the triangle $CPQ$. Prove that if $D \neq O$ then the lines $AD$ and $DO$ are perpendicular.

1993 IMO Shortlist, 4

Given a triangle $ABC$, let $D$ and $E$ be points on the side $BC$ such that $\angle BAD = \angle CAE$. If $M$ and $N$ are, respectively, the points of tangency of the incircles of the triangles $ABD$ and $ACE$ with the line $BC$, then show that \[\frac{1}{MB}+\frac{1}{MD}= \frac{1}{NC}+\frac{1}{NE}. \]

2003 AIME Problems, 10

Triangle $ABC$ is isosceles with $AC = BC$ and $\angle ACB = 106^\circ$. Point $M$ is in the interior of the triangle so that $\angle MAC = 7^\circ$ and $\angle MCA = 23^\circ$. Find the number of degrees in $\angle CMB$.

2013 Sharygin Geometry Olympiad, 6

The altitudes $AA_1, BB_1, CC_1$ of an acute triangle $ABC$ concur at $H$. The perpendicular lines from $H$ to $B_1C_1, A_1C_1$ meet rays $CA, CB$ at $P, Q$ respectively. Prove that the line from $C$ perpendicular to $A_1B_1$ passes through the midpoint of $PQ$.

2012 Tuymaada Olympiad, 2

Quadrilateral $ABCD$ is both cyclic and circumscribed. Its incircle touches its sides $AB$ and $CD$ at points $X$ and $Y$, respectively. The perpendiculars to $AB$ and $CD$ drawn at $A$ and $D$, respectively, meet at point $U$; those drawn at $X$ and $Y$ meet at point $V$, and finally, those drawn at $B$ and $C$ meet at point $W$. Prove that points $U$, $V$ and $W$ are collinear. [i]Proposed by A. Golovanov[/i]

2013 Stanford Mathematics Tournament, 2

Points $A$, $B$, and $C$ lie on a circle of radius $5$ such that $AB=6$ and $AC=8$. Find the smaller of the two possible values of $BC$.

2014 Contests, 2

Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.

2014 Dutch IMO TST, 2

Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.

2013 AMC 12/AHSME, 24

Three distinct segments are chosen at random among the segments whose end-points are the vertices of a regular 12-gon. What is the probability that the lengths of these three segments are the three side lengths of a triangle with positive area? $ \textbf{(A)} \ \frac{553}{715} \qquad \textbf{(B)} \ \frac{443}{572} \qquad \textbf{(C)} \ \frac{111}{143} \qquad \textbf{(D)} \ \frac{81}{104} \qquad \textbf{(E)} \ \frac{223}{286}$

2014 NIMO Problems, 4

Points $A$, $B$, $C$, and $D$ lie on a circle such that chords $\overline{AC}$ and $\overline{BD}$ intersect at a point $E$ inside the circle. Suppose that $\angle ADE =\angle CBE = 75^\circ$, $BE=4$, and $DE=8$. The value of $AB^2$ can be written in the form $a+b\sqrt{c}$ for positive integers $a$, $b$, and $c$ such that $c$ is not divisible by the square of any prime. Find $a+b+c$. [i]Proposed by Tony Kim[/i]

Swiss NMO - geometry, 2011.2

Let $\triangle{ABC}$ be an acute-angled triangle and let $D$, $E$, $F$ be points on $BC$, $CA$, $AB$, respectively, such that \[\angle{AFE}=\angle{BFD}\mbox{,}\quad\angle{BDF}=\angle{CDE}\quad\mbox{and}\quad\angle{CED}=\angle{AEF}\mbox{.}\] Prove that $D$, $E$ and $F$ are the feet of the perpendiculars through $A$, $B$ and $C$ on $BC$, $CA$ and $AB$, respectively. [i](Swiss Mathematical Olympiad 2011, Final round, problem 2)[/i]

2005 District Olympiad, 3

Prove that if the circumcircles of the faces of a tetrahedron $ABCD$ have equal radii, then $AB=CD$, $AC=BD$ and $AD=BC$.

1989 AMC 12/AHSME, 19

A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of lengths $3$, $4$, and $5$. What is the area of the triangle? $\textbf{(A)}\ 6 \qquad \textbf{(B)}\ \frac{18}{\pi^2} \qquad \textbf{(C)}\ \frac{9}{\pi^2}\left(\sqrt{3}-1\right) \qquad \textbf{(D)}\ \frac{9}{\pi^2}\left(\sqrt{3}+1\right) \qquad \textbf{(E)}\ \frac{9}{\pi^2}\left(\sqrt{3}+3\right)$

2010 Contests, 2

Let $ABC$ be a triangle with $AB = AC$. The incircle touches $BC$, $AC$ and $AB$ at $D$, $E$ and $F$ respectively. Let $P$ be a point on the arc $\overarc{EF}$ that does not contain $D$. Let $Q$ be the second point of intersection of $BP$ and the incircle of $ABC$. The lines $EP$ and $EQ$ meet the line $BC$ at $M$ and $N$, respectively. Prove that the four points $P, F, B, M$ lie on a circle and $\frac{EM}{EN} = \frac{BF}{BP}$.

1996 USAMO, 5

Let $ABC$ be a triangle, and $M$ an interior point such that $\angle MAB=10^\circ$, $\angle MBA=20^\circ$, $\angle MAC=40^\circ$ and $\angle MCA=30^\circ$. Prove that the triangle is isosceles.

2013 Math Prize For Girls Problems, 15

Let $\triangle ABC$ be a triangle with $AB = 7$, $BC = 8$, and $AC = 9$. Point $D$ is on side $\overline{AC}$ such that $\angle CBD$ has measure $45^\circ$. What is the length of $\overline{BD}$?

2006 Kyiv Mathematical Festival, 3

See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url] Let $O$ be the circumcenter and $H$ be the intersection point of the altitudes of acute triangle $ABC.$ The straight lines $BH$ and $CH$ intersect the segments $CO$ and $BO$ at points $D$ and $E$ respectively. Prove that if triangles $ODH$ and $OEH$ are isosceles then triangle $ABC$ is isosceles too.

2007 Purple Comet Problems, 23

Two circles with radius $2$ and radius $4$ have a common center at P. Points $A, B,$ and $C$ on the larger circle are the vertices of an equilateral triangle. Point $D$ is the intersection of the smaller circle and the line segment $PB$. Find the square of the area of triangle $ADC$.