Found problems: 837
2014 Contests, 2
$a)$ Let $n$ a positive integer. Prove that $gcd(n, \lfloor n\sqrt{2} \rfloor)<\sqrt[4]{8}\sqrt{n}$.
$b)$ Prove that there are infinitely many positive integers $n$ such that $gcd(n, \lfloor n\sqrt{2} \rfloor)>\sqrt[4]{7.99}\sqrt{n}$.
1970 Putnam, A4
Given a sequence $(x_n )$ such that $\lim_{n\to \infty} x_n - x_{n-2}=0,$ prove that
$$\lim_{n\to \infty} \frac{x_n -x_{n-1}}{n}=0.$$
2012 Waseda University Entrance Examination, 5
Take two points $A\ (-1,\ 0),\ B\ (1,\ 0)$ on the $xy$-plane. Let $F$ be the figure by which the whole points $P$ on the plane satisfies $\frac{\pi}{4}\leq \angle{APB}\leq \pi$ and the figure formed by $A,\ B$.
Answer the following questions:
(1) Illustrate $F$.
(2) Find the volume of the solid generated by a rotation of $F$ around the $x$-axis.
2007 Brazil National Olympiad, 1
Let $ f(x) \equal{} x^2 \plus{} 2007x \plus{} 1$. Prove that for every positive integer $ n$, the equation $ \underbrace{f(f(\ldots(f}_{n\ {\rm times}}(x))\ldots)) \equal{} 0$ has at least one real solution.
2024 IMC, 8
Define the sequence $x_1,x_2,\dots$ by the initial terms $x_1=2, x_2=4$, and the recurrence relation
\[x_{n+2}=3x_{n+1}-2x_n+\frac{2^n}{x_n} \quad \text{for} \quad n \ge 1.\]
Prove that $\lim_{n \to \infty} \frac{x_n}{2^n}$ exists and satisfies
\[\frac{1+\sqrt{3}}{2} \le \lim_{n \to \infty} \frac{x_n}{2^n} \le \frac{3}{2}.\]
2017 Romania National Olympiad, 1
[b]a)[/b] Let be a continuous function $ f:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R}_{>0} . $ Show that there exists a natural number $ n_0 $ and a sequence of positive real numbers $ \left( x_n \right)_{n>n_0} $ that satisfy the following relation.
$$ n\int_0^{x_n} f(t)dt=1,\quad n_0<\forall n\in\mathbb{N} $$
[b]b)[/b] Prove that the sequence $ \left( nx_n \right)_{n> n_0} $ is convergent and find its limit.
2007 Nicolae Coculescu, 2
Let be two sequences $ \left( a_n \right)_{n\ge 0} , \left( b_n \right)_{n\ge 0} $ satisfying the following system:
$$ \left\{ \begin{matrix} a_0>0,& \quad a_{n+1} =a_ne^{-a_n} , &\quad\forall n\ge 0 \\ b_{0}\in (0,1) ,& \quad b_{n+1} =b_n\cos \sqrt{b_n} ,& \quad\forall n\ge 0 \end{matrix} \right. $$
Calculate $ \lim_{n\to\infty} \frac{a_n}{b_n} . $
[i]Florian Dumitrel[/i]
2006 Vietnam National Olympiad, 4
Given is the function $f(x)=-x+\sqrt{(x+a)(x+b)}$, where $a$, $b$ are distinct given positive real numbers. Prove that for all real numbers $s\in (0,1)$ there exist only one positive real number $\alpha$ such that \[ f(\alpha)=\sqrt [s]{\frac{a^s+b^s}{2}} . \]
2011 Today's Calculation Of Integral, 713
If a positive sequence $\{a_n\}_{n\geq 1}$ satisfies $\int_0^{a_n} x^{n}\ dx=2$, then find $\lim_{n\to\infty} a_n.$
2003 District Olympiad, 4
Consider the continuous functions $ f:[0,\infty )\longrightarrow\mathbb{R}, g: [0,1]\longrightarrow\mathbb{R} , $ where $
f $ has a finite limit at $ \infty . $ Show that:
$$ \lim_{n \to \infty} \frac{1}{n}\int_0^n f(x) g\left( \frac{x}{n} \right) dx =\int_0^1 g(x)dx\cdot\lim_{x\to\infty} f(x) . $$
2023 CIIM, 4
For a positive integer $n$, $\sigma(n)$ denotes the sum of the positive divisors of $n$. Determine $$\limsup\limits_{n\rightarrow \infty} \frac{\sigma(n^{2023})}{(\sigma(n))^{2023}}$$
[b]Note:[/b] Given a sequence ($a_n$) of real numbers, we say that $\limsup\limits_{n\rightarrow \infty} a_n = +\infty$ if ($a_n$) is not upper bounded, and, otherwise, $\limsup\limits_{n\rightarrow \infty} a_n$ is the smallest constant $C$ such that, for every real $K > C$, there is a positive integer $N$ with $a_n < K$ for every $n > N$.
1952 AMC 12/AHSME, 36
To be continuous at $ x \equal{} \minus{} 1$, the value of $ \frac {x^3 \plus{} 1}{x^2 \minus{} 1}$ is taken to be:
$ \textbf{(A)}\ \minus{} 2 \qquad\textbf{(B)}\ 0 \qquad\textbf{(C)}\ \frac {3}{2} \qquad\textbf{(D)}\ \infty \qquad\textbf{(E)}\ \minus{} \frac {3}{2}$
1951 Miklós Schweitzer, 4
Prove that the infinite series
$ 1\minus{}\frac{1}{x(x\plus{}1)}\minus{}\frac{x\minus{}1}{2!x^2(2x\plus{}1)}\minus{}\frac{(x\minus{}1)(2x\minus{}1)}{3!(x^3(3x\plus{}1))}\minus{}\frac{(x\minus{}1)(2x\minus{}1)(3x\minus{}1)}{4!x^4(4x\plus{}1)}\minus{}\cdots$
is convergent for every positive $ x$. Denoting its sum by $ F(x)$, find $ \lim_{x\to \plus{}0}F(x)$ and $ \lim_{x\to \infty}F(x)$.
1982 Putnam, B5
For each $x>e^e$ define a sequence $S_x=u_0,u_1,\ldots$ recursively as follows: $u_0=e$, and for $n\ge0$, $u_{n+1}=\log_{u_n}x$. Prove that $S_x$ converges to a number $g(x)$ and that the function $g$ defined in this way is continuous for $x>e^e$.
2003 IMC, 2
Evaluate $\lim_{x\rightarrow 0^+}\int^{2x}_x\frac{\sin^m(t)}{t^n}dt$. ($m,n\in\mathbb{N}$)
1981 Spain Mathematical Olympiad, 5
Given a nonzero natural number $n$, let $f_n$ be the function of the closed interval $[0, 1]$ in $R$ defined like this:
$$f_n(x) = \begin{cases}n^2x, \,\,\, if \,\,\, 0 \le x < 1/n\\ 3/n, \,\,\,if \,\,\,1/n \le x \le 1 \end{cases}$$
a) Represent the function graphically.
b) Calculate $A_n =\int_0^1 f_n(x) dx$.
c) Find, if it exists, $\lim_{n\to \infty} A_n$ .
1991 Vietnam Team Selection Test, 3
Let $\{x\}$ be a sequence of positive reals $x_1, x_2, \ldots, x_n$, defined by: $x_1 = 1, x_2 = 9, x_3=9, x_4=1$. And for $n \geq 1$ we have:
\[x_{n+4} = \sqrt[4]{x_{n} \cdot x_{n+1} \cdot x_{n+2} \cdot x_{n+3}}.\]
Show that this sequence has a finite limit. Determine this limit.
2008 Harvard-MIT Mathematics Tournament, 9
([b]7[/b]) Evaluate the limit $ \lim_{n\rightarrow\infty}
n^{\minus{}\frac{1}{2}\left(1\plus{}\frac{1}{n}\right)}
\left(1^1\cdot2^2\cdot\cdots\cdot n^n\right)^{\frac{1}{n^2}}$.
2002 Romania National Olympiad, 2
Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function that has limits at any point and has no local extrema. Show that:
$a)$ $f$ is continuous;
$b)$ $f$ is strictly monotone.
2023 SEEMOUS, P2
For the sequence \[S_n=\frac{1}{\sqrt{n^2+1^2}}+\frac{1}{\sqrt{n^2+2^2}}+\cdots+\frac{1}{\sqrt{n^2+n^2}},\]find the limit \[\lim_{n\to\infty}n\left(n\cdot\left(\log(1+\sqrt{2})-S_n\right)-\frac{1}{2\sqrt{2}(1+\sqrt{2})}\right).\]
2011 Laurențiu Duican, 2
$ \lim_{n\to\infty } \int_{\pi }^{2\pi } \frac{|\sin (nx) +\cos (nx)|}{ x} dx ? $
[i]Gabriela Boeriu[/i]
2019 Jozsef Wildt International Math Competition, W. 47
[list=1]
[*] If $a$, $b$, $c$, $d > 0$, show inequality:$$\left(\tan^{-1}\left(\frac{ad-bc}{ac+bd}\right)\right)^2\geq 2\left(1-\frac{ac+bd}{\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}}\right)$$
[*] Calculate $$\lim \limits_{n \to \infty}n^{\alpha}\left(n- \sum \limits_{k=1}^n\frac{n^+k^2-k}{\sqrt{\left(n^2+k^2\right)\left(n^2+(k-1)^2\right)}}\right)$$where $\alpha \in \mathbb{R}$
[/list]
1989 Iran MO (2nd round), 3
Let $\{a_n\}_{n \geq 1}$ be a sequence in which $a_1=1$ and $a_2=2$ and
\[a_{n+1}=1+a_1a_2a_3 \cdots a_{n-1}+(a_1a_2a_3 \cdots a_{n-1} )^2 \qquad \forall n \geq 2.\]
Prove that
\[\lim_{n \to \infty} \biggl( \frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\cdots + \frac{1}{a_n} \biggr) =2\]
2001 Putnam, 6
Assume that $(a_n)_{n \ge 1}$ is an increasing sequence of positive real numbers such that $\lim \tfrac{a_n}{n}=0$. Must there exist infinitely many positive integers $n$ such that $a_{n-i}+a_{n+i}<2a_n$ for $i=1,2,\cdots,n-1$?
2007 Today's Calculation Of Integral, 216
Let $ a_{n}$ is a positive number such that $ \int_{0}^{a_{n}}\frac{e^{x}\minus{}1}{1\plus{}e^{x}}\ dx \equal{}\ln n$.
Find $ \lim_{n\to\infty}(a_{n}\minus{}\ln n)$.